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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1991, VOL. 10, NO. 1, 1-54 

Theory of chemical bonding based on the atom-homogeneous 
electron gas system 

by TODD J. RAEKER and ANDREW E. DEPRISTO 
Department of Chemistry and Ames Laboratory-U.S.D.O.E., 

Iowa State University, Ames, Iowa 50011, U.S.A. 

We review recent developments in the theory of chemical bonding based upon 
replacement of an N-atom system by N individual systems each consisting of an 
atom embedded in a homogeneous electron gas. These theories include the 
corrected effective medium and effective-medium-based methods, which are either 
first principle or semi-empirical, as well as the embedded atom and related methods 
(e.g. the ‘glue’ and Finnis-Sinclair methods), which are totally empirical. These 
methods can provide an accurate description of metal-metal interactions for simple 
or transition metals with weak d bonding, including homogeneous and 
heterogeneous systems. They also can describe the binding of non-metallic atoms to 
metals. A number of these methods are efficient enough computationally to be used 
in molecular dynamics and/or Monte Carlo simulations of systems with many 
thousands of atoms. 

1. Introduction 
It is a formidable quantum mechanical problem to determine the energies and 

forces in multi-atom systems. For metals, the difficulty is increased because of the 
strongly delocalized nature of the electrons. For heavy elements, the problem is 
amplified by the large number of electrons (Salahub and Zerner 1989). 

In this review, we present recent theories based upon the density functional 
formalism which are specifically designed to describe systems containing many metal 
atoms. Some of these theories have also been shown to be applicable to non-metal 
atoms and small systems. The central idea of all these methods is the replacement of a 
real N-atom system with many effective systems, each of which is one of the atoms 
embedded in je1lium.t Since the atom-in-jellium forms the effective system while the 
jellium is the effective medium, one could label these as effective medium (EM) theories. 
Alternatively, one could focus on embedding the atom in jellium and label these 
embedded-atom methods (EAM). However, both these names now denote a particular 
form of these theories, not the general theoretical approach. Thus, throughout this 
review, we refer to the general theoretical methods as effective-medium type. 

The concepts in effective-medium-type theories may seem foreign to chemists, who 
are familiar with the language of orbitals and their energies rather than embedding 
energies, electron density and its inhomogeneity. The detailed exposition of theoretical 

t Jellium is a three-dimensional infinite homogeneous electron gas with a uniform 
compensating positive density. Upon embedding an atom in jellium, the electron density 
becomes inhomogeneous. The embedding energy is the difference between the atom-jellium and 
isolated atom and jellium systems. 

The submitted manuscript has been authored by a contractor of the US. Government under 
contract No. W-7405-ENG-82. Accordingly, the U.S. Government retains, a nonexclusive, 
royalty-free license to publish or reproduce the published form of this contribution, or allow 
others to do so for U.S. Government purposes. 
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2 T. J .  Raeker and A. E. DePristo 

methods in sections 2 and 3 allows for a global view of the effective-medium type 
approaches with considerable study and effort. In order to induce the reader into this 
effort, we provide an overview here, with an emphasis on qualitative understanding of 
the effective medium type concepts and methods. 

Label the atoms by {A,  i =  1,. . . , N} where the Ai can be any type of atom. The 
interaction energy in the N-atom system, AE({Ai}), is written as 

Here AE,(A,; ni) is the embedding energy of Ai in jellium with electron density ni; the 
summation extends over all N-atoms. The choice of the jellium densities and the form of 
the corrections distinguish the various theories based upon equation (1.1). Before 
considering these in detail, we make a few general points: 

(a) the embedding energies are functions only of the identity of the atom and the 
electron density, and can be calculated and tabulated once and for all; 

(b) the corrections take into account the differences between the more localized 
electron density and nuclear charges in the real N-atom system as compared to 
the atom-in-jellium systems. 

Because of the second point, a fully self-consistent solution of equation (1.1) would 
require more work than a self-consistent solution of the original N-atom system. 
Hence, effective-medium-type-based theories are inherently not self-consistent. Instead, 
in these methods, one expects that the corrections are relatively small. Equation (1.1) 
should be looked at as a perturbation-theory expression in which a reference state of 
the atom-in-jellium systems is used rather than the standard reference of the vacuum. 
We do want to emphasize that the non-empirical theories based upon equation (1.1) 
used atoms and their densities to determine the jellium electron density; the jellium is 
really only used to translate an electron density into an energy via the embedding 
function. 

Theories based upon this idea cover a wide spectrum. The most sophisticated and 
time-consuming computationally involve writing the corrections explicitly: 

The embedding energies are taken from the SCF-LD calculations (Puska et al. 1981, 
Puska 1988) or determined from information on homonuclear diatomic and bulk 
systems of atom Ai. A K  is the difference in the Coulombic energy between the N-atom 
system and the N atom-in-jellium systems. AG is a similar difference but for the sum of 
the kinetic, exchange, and correlation energies. The two methods which use equation 
(1.2) are the corrected effective medium (CEM) theory (Kress and DePristo 1988, Kress 
et al. 1989, Raeker and DePristo 1989) and the effective medium theory in its most 
recent version due to Nerrskov and co-workers (Jacobson et al. 1987, Jacobson 1988). 
The former uses atomic Hartree-Fock (HF) densities and direct evaluation of both the 
Coulomb integrals and the kinetic-exchange-correlation integral. It is applicable to 
large and small systems. The latter employs atom-induced densities in the atom-in- 
jellium system and approximates A K  and AG in a manner appropriate for extended 
systems. The former is more computationally demanding than the latter. 

The physical factors contributing to the correction, A K  and AG, can be identified. 
The first is the difference in homogeneity between the electron density distributions in 
the real and atom-in-jellium systems. The second is the difference between the uniform 
positive background in the jellium and the point nuclear charges in the real system. The 
third is the difference in spin-polarization between the real system and the unpolarized 
atom-in-jellium one. 

AE((Ai}) = 1 AE,(Ai ; n,) + corrections. (1.1) 

AE({A,})=C AE,(A,; ni) + A K  + AG({A,)). (1.2) 
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Atom-homogeneous electron-gas bonding theory 3 

Historically, both the CEM and EM theories were developed in the form of an 
active atom embedded in an inert metallic host (Kress and DePristo 1987, Narrskov and 
Lang 1980, Stott and Zaremba 1980). We ignore these theories throughout this review 
(with the exception of a brief discussion of their application to atomic chemisorption in 
section 4), always referring to CEM and EM as the form in which all atoms are 
embedded in jellium. The interested reader may consult a number of earlier reviews 
including some rather recent ones (Narrskov and Besenbacher 1987, Lundqvist et al. 
1987, McMullen et al. 1989). 

A less sophisticated and semi-empirical theory results from neglecting the last term 
in equation (1.2) and using empirical embedding functions: 

AE((A, ) )=~AF, (A, ;n , )+A~.  (1.3) 
The embedding functions, AFj, are determined from information on homonuclear 
diatomic and/or bulk systems of atom A? AV, is still the difference in the Coulombic 
energy between the N-atom system and the N atom-in-jellium systems. The method 
which uses equation (1.3) is the molecular dynamics/Monte Carlo corrected effective- 
medium N-body theory (MD/MC-CEM) (Stave et al. 1990). It is so named since the 
energies and forces based upon equation (1.3) can be evaluated fast enough to perform 
MD and MC simulations on large systems (Sanders et al. 1990). The simple expression 
in equation (1.3) is less accurate than the full CEM theory, especially for cases in which 
there are inhomogeneous electron densities. In those cases, the neglect of the AG term 
leads to substantial inaccuracies in geometrical predictions. 

It is worthwhile to note that equation (1.3) still uses atomic H F  densities and direct 
evaluation of the Coulomb integrals. The jellium densities and Coulomb energies 
are non-empirical, and the embedding functions are not dependent upon the 
environment. Hence equation (1.3) can be used to predict the behaviour of 
heterogeneous systems once the embedding functions have been determined from 
properties of the homogeneous systems. 

The simplest theories are the purely empirical embedded-atom method (Daw and 
Baskes 1984, Daw 1989), ‘glue’ model (Ercolessi et al. 1986, 1987a, 1987b, 1988) and 
Finnis-Sinclair method (Finnis and Sinclair 1984, Finnis et al. 1988). These remove the 
connection to any calculated atomic densities, simply by using arbitrary forms for an 
electron density function in the case of the EAM and Finnis-Sinclair methods; in the 
‘glue’ model, an effective coordination function is employed instead of an electron 
density function. All these methods replace the calculated Coulomb integrals with 
empirical two-body potentials, leading to 

AE({ Ai}) = C AfJ(Ai ; nil + C G,(i,.j)- (1.4) 
i j#i 

The electron density functions, embedding functions and pair potentials are 
determined by fitting to certain types of experimental data. In these empirical theories, 
the two-body potentials must be determined for all types of atoms in a heterogeneous 
system. Hence one cannot generally predict the behaviour of heterogeneous systems 
from homogeneous ones. Instead, one uses some properties of the heterogeneous 
systems to predict other properties. Thus these methods are best considered as 
reasonably sophisticated representations of many-body potentials involving metallic 
systems. It is unlikely that such methods can be useful in small systems without 
additional empirical constructs. 

The range of these theories has led to some confusion in the literature, especially 
regarding the relationships between the semi-empirical EM theory of Nlarskov and 
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4 T. J .  Raeker and A.  E.  DePristo 

co-workers and the empirical EAM, ‘glue’ and Finnis-Sinclair methods. The above 
qualitative presentation and the details presented later in this review demonstrate that 
effective-medium-type theories range from (non-self-consistent) first principle to semi- 
empirical to empirical methods. This is similar to the situation in conventional 
chemical approaches except that self-consistent ab initio or density-functional theories 
are absent, of course. We should also emphasize that effective-medium-type methods 
do not provide any information on electronic wavefunctions, just interaction energies 
for specific nuclear geometries. Thus they are more limited than wavefunction 
approximations but can also be substantially more accurate and much more efficient 
computationally. 

Effective-medium-type theories are also closely related to the electron-gas theory 
(Gordon and Kim 1972, Kim and Gordon 1974, Waldman and Gordon 1979, 
Muhlhausen and Gordon 198 1). Indeed, the effective-medium-type theory can be 
thought of as simply the electron-gas theory using a different reference system, namely 
the atom-in-jellium. This greatly increases the accuracy of electron-gas methods in the 
same way that pertubation theory increases in accuracy for any problem as the zeroth- 
order model improves. This type of reasoning may be useful for chemists familiar with 
the Gordon-Kim applications, and especially with the inability of the electron gas to 
describe chemical bonding. Such inadequacies do not arise in the effective-medium- 
type methods because the atom-in-jellium system contains many of the features in 
chemical bonding, especially for ionic bonds. We do not want to overemphasize the 
electron-gas theory since it is only the corrections in effective-medium-type methods 
that are provided by the electron gas, and even these can be found in other ways. The 
central feature of effective-medium-type theories is the atom embedded in jellium. 

Our presentation will be logical rather than chronological, completely ignoring the 
early less general theories. We start by considering the typical low-symmetry systems of 
any types of atoms that are found in chemistry. Later, we will implement various 
translational symmetries to provide treatments of surfaces and solids that are more 
typically found in physics. In addition, we will derive the various methods in a logical 
and hierarchical manner, starting with the most sophisticated and direct treatment of 
the correction terms, and leading to the most empirical forms, basically useful for the 
representation of many-body potential-energy surfaces. 

As in any review, we have tried to provide an accurate assessment of the current 
literature. Because of the simplicity of some of the interaction energy models presented 
herein, a great number of very short papers have been published consisting of a 
straightforward application; the main conclusion is invariably that the theory and 
experiment agree. We will not burden the reader with exhaustive description of such 
applications. Instead, we try to indicate the overall nature of the field, stressing the 
concepts, capabilities and even the incapabilities. 

2. First-principle and semi-empirical effective-medium-type theories 
In this section, we develop the effective-medium-type theories, focusing on the 

CEM method which has been applied to systems with an arbitrary number of particles 
and geometry (Kress and DePristo 1988, Kress et al. 1989, Raeker and DePristo 1989, 
Stave et a/ .  1990). We also present the newest EM method (Jacobson et al. 1987, 
Jacobson 1988) which is also applicable to an arbitrary number of particles and which 
was derived independently around the same time. These two methods are equivalent in 
their fundamental formalism but differ in implementation. 
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Atom-homogeneous electron-gas bonding theory 5 

An important point is that the CEM method is a non-self-consistent first-principles 
approach when used with the SCF-LD embedding energies of atoms in jellium (Puska 
et al. 1981, M. J. Puska 1988, private communication) and the atomic H F  densities 
(Clementi 1965, Bagus et al. 1972). There are no parameters to determine from 
experimental data. Alternatively, with an embedding function determined from 
experimental data, the CEM method becomes a semi-empirical method. 

2.1. Corrected eflective medium theory 
The derivation follows that of Kress and DePristo (1988) to which the reader is 

referred for further details. As in section 1, we consider an N-body system consisting of 
atoms { A ,  i = 1 , .  . . , N }  where the Ai can be any type of atom. The nuclear positions are 
(Ri}, nuclear charges are { Z , } ,  and the electronic coordinates relative to each nuclear 
positions are {r,}. The spin-up, spin-down and total electron density around each atom 
are denoted by n+(A,; ri), n-(Ai;  ri) and n(Ai; r,) respectively. 

The desired quantity is the energy difference between the interacting and non- 
interacting systems of atoms, denoted by 

AE({ Ai}) = E(C Ail - C E(Ai)* (2.1) 
To evaluate this energy difference, we use the energy of each atom embedded into 
jellium (Puska et al. 1981, Puska 1988, private communication), defined by 

AE,(Ai ; n,) = E(Ai + ni) - E(ni) - E(Ai) (2.2) 
Here E(ni) and E(A, + ni) are respectively the energies of the jellium and of the jellium 
plus atom Ai system. (The notation in Kress and DePristo has an added subscript J on 
some total energy quantities, e.g. Ej(Ai ; n,), which is not needed since the appearance of 
n, always indicates jellium.) Elimination of the atom energy, E(Ai), common to 
equations (2.1) and (2.2) leads to the first fundamental relationship of the CEM theory: 

AE({Ai})=~AE,(Ai; n,)+E(xA,)-x [E(Ai+ni)-E(ni)l (2.3) 
In equation (2.3), the first term on the right-hand side is the sum of the embedding 

energies for each atom in jellium of some (as yet unspecified) electron density ni. These 
energies can be evaluated from SCF-LD calculations (Puska et al. 1981, Puska 1988, 
private communication) or from other, semi-empirical, methods as discussed in 
subsection 2.5. We will not distinguish between these two functions until then. The form 
of the remaining three terms in equation (2.3) and the choice of the densities ni are 
addressed in the remainder of this subsection. 

The energy is composed of Coulombic, kinetic, exchange and correlation parts. We 
denote this separation by 

E({Ai})= K({Ai}) + G({Ai}), (2.4) 
where V ,  is the Coulombic energy and G is the sum of the kinetic and exchange- 
correlation energies, T and Ex, respectively. Substitution of equation (2.4) into 
equation (2.3) yields the second fundamental relationship of CEM theory, 

AE({Ai})=x AE,(Ai ; ni) + AK + AG({Ai)) (2.5 a) 
where 

AG({Ai})=G(C A J - C  CG(Ai+ nil- G(ni)] (2.5 b) 
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6 T. J. Raeker and A. E .  DePristo 

Equation (2.5 a) expresses the stabilization energy of the N-atom cluster as a total of 

(a) The sum of the embedding energies for the atoms in jellium. 
(b) The difference in the Coulombic energy between the real system and all the 

atoms in jellium. 
(c) The difference in the sum of the kinetic, exchange, and correlation energies 

between the real system and all the separated atoms in jellium. 

This decomposition is useful since the physical factors contributing to A K  and AG can 
be identified. 

For AK, there are two physical effects. The first is the difference in homogeneity of 
the electron density distributions in the real and atom-in-jellium systems. The second is 
the difference between the uniform positive background in the jellium and the point 
nuclear charges in the real system. For AG, there are also two effects. The first, and most 
important, is again the difference in uniformity of the electron density distributions. 
The second is the (possible) difference in spin-polarization between the real system and 
the unpolarized atom-in-jellium one. 

Since self-consistent evaluation of equation (2.5 a) would be as difficult as 
evaluation of the original equation (2. l), progress requires an approximate evaluation 
of equation (2.5 a) based upon some Ansatz about the relationship between the electron 
density of the N-atom system and that of the N individual atoms. (A similar Ansatz 
must be applied to the A-J system uersus the A and J separately.) The fundamental 
assumption is that the electron density at any point in space, r, is the sum of the 
spin-densities from each atom: 

n +( r) = (2.6 a) 

n-(r)=In-(A,;  r -  Ri) (2.6 b) 

It is important to note that the effects of electron inhomogeneity and spin- 
polarization do not vanish even within this superposition approximation. Indeed, since 
the difference in the energies of the real uersus jellium systems is calculated, we expect 
lower sensitivity to the use of accurate electron densities than the direct calculation of 
energetics in either system by itself, assuming of course that the proper electron density 
in the jellium is used. In other words, a self-consistent calculation is employed via the 
AE,(Ai ; ni) and only the corrections due to inhomogeneity and spin-polarization of the 
electron and positive charge distribution are calculated non-self-consistently. More 
rigorously, one may resort to density-functional theory to demonstrate that a first- 
order error in the electron density leads to a second-order error in the energy (Nnrrskov 
and Lang 1980, Stott and Zaremba 1980, Nerrskov and Besenbacher 1987, Lundqvist 
et al. 1987, McMullen et al. 1988). 

First consider the Coulombic energies. Since the additive electron density 
approximation is assumed to hold for each atom in the jellium also, the electrostatic 
interaction in the jellium system vanishes. The difference in Coulombic energies is then 
given by that of the real system only: 

three terms. 

n +(Ai ; r - Ri) 

(2.7 a) 

K(i, j )  = [n(Ai ; r I  - Ri) -Zi6(r, - Ri)]r;i[n(Ai ; r2 - Rj) -Zj6(r, - Rj)] dr, dr,. 

(2.7 b) 
s 
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Atom-homogeneous electron-gas bonding theory 7 

These electron4ectron and electron-nuclear integrals can be evaluated by standard 
methods (Huzinaga 1967). 

There are three remaining problems. First, accurate electron spin-density 
functionals must be used for the kinetic, exchange and correlation energies. Second, a 
proper choice of the jellium electron density must be determined. Third, the calculation 
of the corrections involves a multi-centre three-dimensional integration over the 
functionals of the electron density, which must be performed precisely and efficiently. 
The first and second points are addressed in this subsection, while the third is relegated 
to subsection D which also includes details of the CEM calculations. 

The function G is written as 

G = [z(n + (r)) + z(n -(r)) + c,,(n + (r), n - (r))] d r. (2.8) s 
The functions for the exchange-correlation energy, cxc(n), must be the same as used in 
the SCF-LD calculations of the atom-in-jellium system or else the atomic energies 
cannot be eliminated between equation (2.1) and (2.2). The SCF-LD calculations 
employed the local Dirac exchange (Dirac 1930) and local Gunnarsson-Lundqvist 
correlation functionals (Gunnarsson and Lundqvist 1976). 

Since the SCF-LD results used the exact kinetic energy within the Kohn-Sham 
formalism, an accurate Pade approximant representation of the full gradient expansion 
is used (DePristo and Kress 1987). This provides the kinetic energy density function for 
either up or down electron spin-density symbolized here by n *(r): 

(1 +0*95x+ 14*28111x2- 19 .57962~~  +26*64777x4) 
(1 - 0 . 0 5 ~  + 9.99802~’ + 2 . 9 6 0 8 5 ~ ~ )  r(n * (r)) = zo(n * (r)) (2.9 a)  

3 
10 zo(n *(r)) =- (6z2)’I3n * ( ~ ) ~ / 3  (2.9 b) 

(2.9 c) 

The variable x is the ratio of the second-order gradient term to the zeroth-order term. 
This functional reproduces the kinetic energies of atoms quite accurately. However, it 
becomes the Weizacker form, 

z(n * (r)) + IVn * (r)12/8n * (r) 
as x+co, and this may overestimate the kinetic energy for small densities and large 
gradients. Such an overestimate will be significant for weakly interacting systems only. 
In these cases, one can simply use ro(n*(r)). 

The question of exchange-correlation functionals is worthwhile to discuss a little 
more since more accurate exchange (Becke 1986, Ghosh and Parr 1986, Perdew and 
Yue 1986, DePristo and Kress 1988) and correlation (Perdew 1986) energy functionals 
are available. We have used some of these functionals when the SCF-LD embedding 
energies have been replaced by an empirically constructed form as explained in 
subsection 2.5. We have found that this is not particularly important for the interaction 
energies, especially compared to a number of more severe problems with choice of the 
atomic occupations as described in subsection 2.4. 

The determination of the jellium electron density is considered next. Since the non- 
self-consistent part of the CEM formalism is expected to be less accurate than the self- 
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8 T. J .  Raeker and A.  E.  DePristo 

consistent part, we minimize the IAGI term in the former? with respect to the {n,}. Since 
G is a complicated functional of both the electron spin-densities and their gradients, an 
analytic minimization of IAGI is not possible, and a numerical minimization does not 
provide insight into the proper choice of the jellium densities. However, examining the 
variation of the sum of the leading terms, which are local kinetic-exchange energy, with 
n+ shows that the integrand can be approximated quite closely by a quadratic in n +  
(Kress and DePristo 1987). Within this quadratic approximation for the functional in 
both n +  and n-,  we have 

A G z  C c  c (n+(Ai; r-Ri)n+(Aj; r- Rj)+n-(Ai; r- Ri)n-(Aj; r- Rj)} dr 

- 2 C c  fn+(Ai;  r- Ri)n' + n-(Ai;  r- Ri)n;} dri, ( 2 . 1 0 ~ )  

where C is the coefficient of the quadratic fit. Since the SCF-LD jellium uses an 
unpolarized electron gas, n' = n; = ni/2 in equation (2.10 a), yielding 

i j # i  s 
i s 

i j + i  s A G z C Z  c {n+(Ai; r- Ri)n+(Aj; r- Rj)+n-(Ai; r- Ri)n-(Aj; r -  Rj)} dr 

- C c Zin,. 
1 

(2.10 b) 

Minimization of IAGI in equation (2.10b) leads to solutions for ni which are 
independent of the coefficient C. The most symmetric solution is 

ni= c Ztrl {n+(Ai;  r- Ri)n+(Aj; r- Rj)+n-(Ai; r- Ri)n-(Aj; r - rj)} dr (2.1 1 a) 
j + i  J 

This possesses a number of reasonable physical properties. First, the jellium electron 
density on atom Ai due to atom Aj is proportional to the electron spin-density of A j  
averaged over atom Ai with the weight function equal to the (normalized) electron spin- 
density of Ai. Since the 'size' of atom Ai can be characterized by the atomic electron 
spin-density, such an average makes good physical sense. Second, for the case of spin- 
unpolarized atoms, ni becomes 

n(Ai; r - Ri)n(Aj; r - Rj)dr. (2.1 1 b) 

This is half of the total electron density average because of a division of electron density 
between the two atoms, an effect which is analogous to dividing up a pair potential qj, 
into + K j  +3yi and which thus eliminates overcounting of embedding energies. (Note 
that for a given pair of atoms, i and j ,  the electron density overlap contribution is equal 
on each atom but the electron density contribution is not, because of the inverse 
weighting by the atomic number.) Third, the integral in equation (2.1 1)  is positive for all 
densities. 

t It is not possible to minimize the term A V ,  + AG, since the Coulombic energy can become so 
negative as to  yield a negative value for the jellium density. 
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Atom-homogeneous electron-gas bonding theory 9 

It is worthwhile to emphasize that the CEM energies are not invariant to arbitrary 
changes in ni because the AG terms are not calculated self-consistently, and thus an 
optimal choice of ni is important. However, small variations of ni do not alter 
significantly the CEM energies because of a cancellation between the embedding 
energies and AG. The original functional is used in numerical calculations of AG and 
the approximation is only necessary to find an analytic choice for ni. 

2.2. Periodic structures 
The theory in subsection 2.1 was applicable for arbitrary geometries and number of 

atoms. It is illustrative to incorporate translational periodicity directly for solids (Kress 
et al. 1989) and surfaces (Raeker and DePristo 1989). 

First consider a system with full three-dimensional (3D) periodicity. Let the ath unit 
cell contain atoms {Aak, k = 1, N,} .  The summation over ‘i’ in equation (2.5 a) can then 
be written using equations (2.7) as a summation over unit cells times a summation over 
atoms in the unit cell 

(2.12) 

One part of AG contains a summation over the atom-in-jellium terms, see equation 
(2.5 b), which can easily be changed to a summation over unit cells and atoms in the 
cell. The only part which may be somewhat confusing is the term in G (I; Ai) that 
involves an integration over the functionals of the electron density of the entire system. 
However, the integral can be evaluated as many integrals over coordinate space closest 
to all the atoms in each unit cell: 

(2.1 3) 

The subscript WS(a) indicates that the integral is evaluated only over this restricted 
region of configuration space, the Wigner-Seitz cell of the ath unit cell. 

Combining equations (2.12) and (2.13), and explicitly writing the summation over 
unit cells and atoms for the G(A,; nj) terms in equation (2.5 b), yields the equation for 3D 
periodic structures: 

(2.14) 

In this equation, a refers to any unit cell, while a’ extends over all cells including a. (The 
term with a’ = a and k‘ = k in the Coulomb summation is not included, of course.) We 
have identified the value of AE/Xa as the cohesive energy. This is the energy gained in 
formation of an infinite periodic structure with N ,  atoms per unit cell from isolated 
atoms. Note how much more efficient equation (2.14) is than the original equation 
(2.12). The summations in the embedding and correction energies extend over the 
atoms in the unit cell, not over all atoms. The Coulomb summation involves only one 
summation over unit cells in order to incorporate intercellular Coulomb interactions. 
All of these terms can be evaluated quite efficiently. 
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10 T. J .  Raeker and A.  E. DePristo 

Two-dimensional periodicity can be incorporated in much the same way. One 
simply recognizes that each unit cell in a particular layer is equivalent to every other cell 
in the same layer. This leads immediately to the result: 

where AEa is the interaction energy for the atoms in any unit cell in the ath layer. Two 
points are worthwhile mentioning. First, as a becomes a bulk layer, the energy in 
equation (2.15) coincides with that in equation (2.14). Second, equation (2.1 5) is 
applicable to adsorbates at any coverage since the summation over k and k' depends 
upon the layer indices a and a'. 

The jellium densities for any atom in both the 2D and 3D periodic formulae are 
computed from the general expression in equation (2.1 I). Translational periodicity 
plays no role since there is only a single summation over the surrounding atoms. This 
summation is truncated when the overlaps become small, just as for the Coulomb 
integral contribution in equation (2.14) and (2.15). 

2.3. Efective-medium theory 
The EM theory has been presented in a number of lucid articles (Jacobson et al. 

1987, Jacobson and Nerrskov 1987, 1988, Stoltze et al. 1987, 1988) and a review 
(Jacobson 1988). A chemically-oriented article is the recent work dealing with the 
extension of the EM method to include dissociation of diatomic molecules on metal 
surfaces (Nsrskov 1989). A complete discussion of the N-body theory is found in 
Jacobson et al. (1987). We refer the reader to these articles for details. 

The starting point is again equation (2.5) which is not surprising since that is a 
general equation simply relating the full N-atom and N-atom-in-jellium systems. The 
difference between EM and CEM methods involves the determination of the jellium 
densities, the evaluation of A& and the calculation of AG({Ai}).  In other words, in the 
details. 

First, the EM method uses the induced atomic electron densities from the SCF-LD 
calculation for the atom-in-jellium system rather than the HF  atomic electron 
densities. Use of this induced electron density then leads to the idea of a neutrality 
sphere around each atom with radius si. The {ni} are chosen as the average electron 
densities of other atoms within this sphere. 

Second, for the Coulomb integrals, the fundamental assumption is that the ith atom 
interacts with the electron density in the real system exactly as it interacts with jellium. 
The integrals are approximated as 

AKW -Ctini+AvAs, (2.16) 

ai= A4(r)dr, (2.17) 

where A 4  is the atom-induced electrostatic potential and the integration extends only 
over the neutrality radius, si. The atomic sphere term, AVAs, corrects for the fact that 
some parts of space are not counted while others are counted twice due to the use of a 
neutrality radius around each atom. 

f si 
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Atom-homogeneous electron-gas bonding theory 11 

Combining equations (2.16) with (2.5 a) yields 

AE({Ai}) =c AEEM, d A i  ; n i )  + AvAS + A q { A i } )  (2.18 a)  

where the new embedding functions are defined as 

BE,, i(Ai ; ni) = AEdA, ; ni) - ainP (2.18 b) 

Furthermore, the term in AG is identified as the difference in the one-electron energies 
between the real and atom-in-jellium systems. (The SCF-LD embedding energies 
(Puska et al. 1981, Puska 1988, private communication) are referred to as AEp to 
distinguish them from other embedding functions are described in subsection 2.5.) 

In the EM theory, all atoms are spherically symmetric and unpolarized. 
Furthermore, the EM method requires explicit estimation of the one-electron energy 
differences whenever partly filled d shells occur. The reader interested in more details 
should consult the original papers. 

2.4. Details of the CEM theory 
The HF electron density and numerical integration are two important details in the 

CEM theory. The electron density of each atom is determined from the wavefunctions 
(Clementi 1965, Bagus et al. 1972). These are expressed in a basis of Slater-type orbitals. 
Since Slater orbitals are inconvenient for calculation of overlaps and Coulomb 
integrals, we have fitted the electron density in an even-tempered Gaussian basis 
(Schmidt and Ruedenberg 1979). The particular type of even-tempered spherical basis 
is (exp( -a/?f(")r')), and the non-spherical p type orbital basis is 

{x' exp ( -u/?f(")r2), y 2  exp (- uflf(")r2), 2 exp (- aflf(")r2)}. 

The function f(n) = n8 and the constants are a, /? and 6. There is nothing fundamental 
about this even-tempered Gaussian representation and any Gaussian basis could be 
used. For all atoms, the d shell is sphericalized and included in the spherical electron 
density. The only non-spherical electron density is of p type. The Gaussian basis allows 
for simple evaluations of the Coulomb and overlap integrals (Huzinaga 1976). 

The evaluation of AG involves N three-dimensional single-centre integrals in 
G(Ai; ni) and one three-dimensional N-centre integral in G(X Ai). The former can be 
easily evaluated using Gaussian integration schemes (Stroud and Secrest 1966, 
Abramowitz and Stegun 1972). The latter presents a rather difficult problem which is 
evaluated using the 'fuzzy' cell integration method of Becke (1988) and Delley (1990). 

Consider the generic integral 

I =  F(r)dr (2.19) s 
which can be rewritten exactly as 

I = wn( r) F( r) d r (2.20) 

under the restriction on the weight functions, 

C w,(r) = 1. (2.21) 

These functions are chosen to be unity when Ir - R,I is much smaller than Ir - Rjl with 
j # n, and to fall-off quickly to zero whenever this condition does not hold. The multi- 
centre three-dimensional integral in equation (2.19) is thereby transformed into many 
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12 T. J .  Raeker and A.  E.  DePristo 

single-centre three-dimensional integrals 
* 

(2.22 a)  

(2.22 b) 

In the limit that the w, are step functions in the minimum distance, the f ,  are 
discontinuous, which is poor for numerical integration. The clever idea was to define a 
set of {w,} which make the { f . }  smooth and thus amenable to efficient numerical 
integration. The reader should consult the articles by Becke (1988) and Delley (1990) for 
further details. 

In CEM, the calculation of all single-centre integrals such as G(A,; ni) and equation 
(2.22 a) is accomplished by Gaussian quadrature of the Laguerre, Legendre and 
Chebyshev forms for the radial, polar and azimuthal integration (Abramowitz and 
Stegun 1972). The Laguerre integration uses the weights for associated Laguerre 
polynomials with a = 3/2 (Stroud and Secrest 1972). About 5000-10 000 points per 
centre have been found to yield AG accurate to better than O.OOO1 eV. 

The next detail involves evaluation of the integrands for the kinetic-exchange- 
correlation integrals, which require the atomic densities and gradients at a large 
number of spatial points, 2 5 OOO N .  Direct evaluation of these densities and gradients 
using either Slater or Gaussian basis sets is much too slow. Instead, we have evaluated 
and stored the radial parts of the spherical, px, py and pz type densities and their 
associated radial derivatives on alarge evenly spaced grid from r = atomic units to 
some large value, r,. (The value of r ,  is chosen such that rln(r,) is smaller than some 
cut-off value, with used at present.) Values at other points are found from linear 
interpolation, which is very fast since the interval can be found without a search on this 
evenly spaced grid. 

The final detail about the electron density involves the occupation of each atomic 
orbital in the HF atom. While this is fixed for each atomic shell, there is no energy 
difference associated with certain variations of occupations within an atomic shell, so 
3p,, 3p, or 3pz can be filled with either an up-spin or down-spin electron in Al. 
Formation of a molecule will be quite dependent upon the particular filling since CEM 
is not a self-consistent theory and thus does not allow the occupations to vary during 
the calculation. An additional complexity occurs since it is really the difference between 
the atoms in the N-atom system and the N atom-in-jellium systems that is calculated. 
The spin-polarization of the former should reflect the spin-polarization in the N-atom 
system and not necessarily that of the isolated atoms. 

It is easy to understand the above problem by example. For the O2 molecule with 
the z axis coincident with the bond axis, a number of different occupations are possible, 
with three listed below: 

Atom 1 1s 2s 2PX 2PY 2PZ 
(Atom 2) 

+1, 0 +1, 0 0 + 1 , - 1  + 1 , - 1  + 1 , - 1  
(0) + 1 , - 1  + 1 , - 1  + 1 , - 1  0,-1 0, -1  

+ 112, - 112 0 + 1 , - 1  + 1 , - 1  + 1 , - 1  
+ 112, - 112 (0) + 1 , - 1  +1,-1 + 1 , - 1  

(0) + 1 , - 1  + I ,  - 1  +2/3, -213 +2/3, -213 + 2 p ,  -213 

+ 112, - 112 
+ 112, - 112 

+ 1 , - 1  + 1, - 1 +2/3, -213 -1-213, -213 +2/3, -213 0 
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Atom-homogeneous electron-gas bonding theory 13 

The first occupation is analogous to a valence bond configuration with spin-pairing in 
the molecule for both py and p, orbitals, forming pi and sigma bonds. The second 
conliguration is analogous to a molecular-orbital description of the same spin-pairing. 
The third configuration yields a spherical unpolarized description of the 0 atoms in the 
0, molecule. Calculations (Kress and DePristo 1988) indicate that either unpolarized 
configuration is adequate. However, this is only a preliminary result and the subject of 
spin-polarization and directional bonding in the CEM theory must be considered 
further in the future. Applications have not considered strong directionally bonded 
systems and indeed have used a full ns2 configuration for all transition metals along 
with sphericalization of the d shell. 

2.5. CEM embedding functions: AE, 
All aspects of the CEM theory have now been presented except for the embedding 

functions. The non-empirical choice uses the results of SCF-LD calculations, which are 
available for a number of atoms (Puska et al. 1981, Puska 1988, private 
communication), and will be referred to with the subscript Pin place of the J to indicate 
the particular type of solution, AE,(A ; n). 

We show all the available AE,(A;n) functions in figure 1. The intercept at zero 
electron density is the negative of the electron affinity of atom A, and is added to the 
SCF-LD values (Hotop and Lineberger 1975). For an atom with positive electron 
affinity this function has the characteristic shape shown in figure 2 for N and F. The 
small decrease of AE,(A; n) with increasing electron density at low electron density is 
due to reorganization of the originally uniform electron density in jellium around the 
atom. The large increase in energy at high electron density is due to the kinetic energy 
repulsion between the electrons of the atom and those of the jellium. 

The troublesome behaviour when using AE,(A ; n) to model the interactions in 
systems composed of atoms is the intercept at - EA. This feature is a direct result of the 
vanishing of the work function for jellium in the zero electron density limit, and 
corresponds to an electron transfer from jellium to the embedded atom. This also 
indicates a clear breakdown of the electron density superposition approximation. For 
real non-interacting systems, the electron density n will vanish via equations (2.1 1 a) or 
(2.1 1 b), thus preventing any electron transfer. In this case, the superposition of atomic 
densities will be exact. Use of AE,(A;n) in the CEM theory will then introduce an 
artificial interaction energy due to the intercept at -EA. This cannot simply be 
subtracted out since the extent of any electron transfer at higher electron density (e.g. 
the breakdown of the electron density superposition approximation) will not be the 
same as the situation at n=O. 

To see this in more detail, consider a diatomic molecule AB for example. At a large 
separation R, the energy required to transfer an electron from B to A is to a good 
approximation 

6E(A, B) =IP(B)- EA(A)- 1/R (2.23) 
in obvious notation. These components can be interpreted in the following manner: (a) 
IP(B) is the energy required to remove an electron from the highest occupied atomic 
orbital (HOAO) of the host which is located at -ZP(B); (b) EA(A) is the energy gained 
by filling the lowest unoccupied A 0  (LUAO) of the atom which is located at - EA(A); 
(c) - 1/R is the reorganization energy gained in the transfer of electron density between 
the two atoms. Equation (2.23) is only correct at large R since at small R the last term 
would eventually become positive due to both electrostatic and kinetic energy overlap 
repulsions. 
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14 T. J .  Raeker and A. E.  DePristo 
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Figure 1. SCF-LD embedding energies for H through Cu as a function of the jellium electron 

density (Puska et al. 1981, M. J. Puska 1988, private communication). 
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15 

17 

0.00 0.01 0.02 0.03 

electron densi ty (au)  

Figure 2. SCF-LD embedding energies for N (-) and F (---) as a function of the jellium 
electron density (Puska et al. 1981, M. J. Puska 1988, private communication). 

0.00 0.01 0.02 0.03 
e l e c t r o i  densi ty  (au) 

Figure 3. Decomposition of the F atom SCF-LD embedding energy according to equation 
(2.24) of the text. The EA(F) would appear as a horizontal line at 3-52eV. (-) work 
function, (---) reorganization energy. 
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18 T. J. Raeker and A .  E. DePristo 

For atom A in jellium, the SCF-LD embedding energy can be written in an 
analogous form to equation (2.23): 

AEdA;n)= WF(n)-EEA(A)+6Er(A;n), (2.24) 
where WF(n) is the work function of the jellium and 6E,(n) is the reorganization energy. 
The work function depends only upon the jellium electron density and is shown in 
figure 3. The reorganization energy depends upon each individual atom, and can be 
calculated by using the known values of AEdA ; n) The result for F is typical and is also 
shown in figure 3. The reorganization energy behaves in an analogous manner to 
- 1/R: both decrease from zero in the limit of non-interaction, R+oo or n+O. In this 
limit both are simply an extra electrostatic reorganization. At large electron density 
6Er(A ; n) becomes quite positive due to kinetic energy and electrostatic repulsions; this 
is exactly how the -1/R term would behave in the real system. Thus the main 
distinction between the jellium and real systems is the difference between the donation 
of an electron from the Fermi level at - WF(n) in the former case and the donation of an 
electron from the HOAO at -ZP(B) in the latter case. 

The above discussion would indicate how to modify the embedding energy, at least 
for a diatomic system treated within CEM, if the bonding was due to a long-range 
electron transfer mechanism. However, the real situation involves a mixture of covalent 
and ionic configurations. Under these circumstances, one must modify AEp(A ; n) using 
further calculations on the atom embedded into jellium system, with variable work 
functions. In other words, rather than calculate the actual non-additive densities in 
each system, we use new embedding functions. We might emphasize that it is a matter of 
choice whether one considers these changes as a definition of a new funciton or as a 
correction of AG due to non-additive densities, at least for homogeneous systems (i.e. all 
N atoms of the same chemical identity). 

The question then arises as to how to determine these new embedding functio;:s. 
For non-metallic atoms, we invert the homonuclear diatomic binding curve using 
equations (2.5) and (2.7 a) to yield 

AEdA,; nJ=  {AE(A1,A,)- K(1,2)-AGtA1,A,)}/2. (2.25) 
The subscript C on this function indicates that it describes covalent bonding in contrast 
to the ionic bonding description evident in AEp By varying the diatomic bond length, it 
is possible to determine the variation of AEc with electron density via equation (2.1 1 b). 
Results for N and 0 are shown in figure 4, where a Morse potential was used to generate 
the binding curves AE(A,,A,) for N, and 0,. It is apparent that AEp(N;n) and 
AEdN ; n) agree rather well while the curves for oxygen disagree very much. This is in 
accord with the substantially higher electron affinity of oxygen and its affinity to form 
0’- in jellium but not in 0,. 

Further details of these problems can be found in the work of Kress and DePristo 
(1988). At the present time, there is no solution to the transition from ionic to covalent 
bonding. Hence application of CEM has been restricted to metals and atomic 
adsorbates on metals for which the covalent and SCF-LD functions respectively are 
appropriate. Strongly ionic compounds such as LiF are also difficult to treat since they 
reflect point-charge-like interactions, an even stronger deviation from the assumption 
of additive atomic densities. One could always use additive ionic densities but AEp are 
unknown for ions. This is not a particularly severe problem in practice since such 
simple systems can be treated already using the original Gordon-Kim electron-gas 
theory with ionic densities (Waldman and Gordon 1979, Muhlhausen and Gordon 
198 1). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Atom-homogeneous electron-gas bonding theory 19 

-5 ' , I 

0.00 0.01 0.02 0.03 0.04 
electron dens i t y  (aul 

Figure 4. The SCF-LD and CEM covalent embedding functions for N and 0. (0) N (SCF-LD), 
(A)  N (covalent), (0) 0 (SCF-LD) and (*) 0 (covalent). 

For metallic atoms, we also invert the cohesive energy of the bulk system via 
equation (2.14): 

(2.26) 

By varying both the diatomic and bulk separations around equilibrium, it is possible to 
determine the variation of BE, with electron density via equation (2.1 1 b). 
Furthermore, the densities in equations (2.25) and (2.26) will be quite distinct because of 
the different number of nearest neighbours in a diatomic, 1, uersus a bulk system, 8-12. 
The universality of equations (2.25) and (2.26) can be determined by the smoothness of 
AEc as a function of electron density. 

This determination of a new embedding function adds an empirical feature to the 
CEM method. This will be undesirable if it eliminates the ability to make predictions 
about the behaviour of new systems. It will be desirable if it determines the energies to 
high accuracy. 

The function AEc is constructed for Ni and Pd using the diatomic Morse potential 
with parameters determined by fitting to the binding energy, bond length and 
vibrational frequency. This yields (De, a,, Re) of (2-092 eV, 1-01 7 bohr- ', 4 1  57 bohr) and 
(1.04eV, 0-6825 bohr-l, 5.008 bohr) for Ni and Pd respectively (Morse 1986). The 
points are evaluated at 1.0&1*05Re in steps of O.OIRe. The bulk cohesive energy used 
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20 T. J. Raeker and A. E. DePristo 

the universal binding energy curve (Rose et al. 1981) in the form of a Morse curve in the 
lattice constant, 

AEcoh(a) = D{exp [ - 2a(a - a,)] - 2 exp [ - a(a - a,)]}. 

The values of (D, a, a,) are (444eV, 0-538464bohr-', 6.65bohr) and (3-89eV, 
0.592743 bohr-l, 7.35 bohr) for Ni and Pd respectively, based upon use of the lattice 
constant, bulk modulus and cohesive energy (Kittel 1971). The value of a was 
determined from the bulk modulus of 1-86 x 10l1 J m-3 and 1.808 x lo1' Jm-3 for Ni 
and Pd respectively (Kittel 1971). The points are evaluated at 095-1*05a0 in steps of 
0-Ola,. This Morse form should be more accurate than a simple-harmonic expansion. 

The functions are shown in figure 5 with the points simply connected by straight 
line segments for clarity. It is evident that the bulk and diatomic regions join smoothly 
to provide a universal embedding energy function, at least for covalently bonded 
systems. We have constructed these functions for a number of metals: Li, Na, Mg, Al, K, 
Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, W, Pt and Au. The results for A1 and Sc 
are shown in figure 6. The values for A1 are reasonably smooth but those for Sc display a 
more distinct break between the diatomic and bulk regions. We have seen such non- 
smooth behaviour for a number of transition metals on the left-hand side of the 
periodic table. 

To understand the problem with Sc in figure 6, remember that the occupations of 
the atoms are fixed by the HF results in CEM. Thus the embedding functions are 
determined for a particular atomic configuration. If this configuration changes 
considerably between the diatomic and the bulk, then the empirical embedding 
function will not be a universal function. Indeed, the poorly described materials are Sc, 
Ti, V and Cr which have partially filled d shells that are sphericalized in the present 
implementation of CEM. This is evidently a gross error in the diatomic since strong 
directional d bonding can occur. While this error is not intrinsic to the CEM formalism, 
it is difficult to remove because the occupation of the d shell will change considerably 
between the diatomic and bulk binding. Such changes likely require some degree of self- 
consistency to describe. 

n 
a 

e I ec t rsn dens i ty Caul 

Figure 5. The CEM covalent embedding functions for Ni (0) and Pd (A). The values labelled 
diatomic are calculated as the bond length varies, with only the 1 W R ,  and 1.05Re results 
shown for clarity. The values labelled bulk are calculated from the monatomic metal as the 
lattice constant varies from 0 . 9 5 ~ ~  until 1.05~0 in steps of 0 . 0 1 ~ ~ .  
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0.000 0.002 0.004 0.006 0,008 
e I ect run dens I ty ( C ~ L J  1 

Figure 6. Same as figure 5 except for A1 (0) and Sc (A). 

It is also worthwhile to note that the covalent functions in figures 5 and 6 are very 
similar to the SCF-LD functions in figure 1. Thus, for metals, the distinction between 
use of the two different functions often is just a question of quantitative accuracy, not 
qualitative differences. This is in distinction to the situation for non-metals such as 
oxygen in figure 4. 

3. Uncorrected and empirical effective-medium-type theories 
The computationally time-consuming part of the CEM theory involves evaluation 

of AG. In this section, we review approximations to the CEM theory which lead to a 
computationally efficient theory (Stave et al. 1989, Sanders et al. 1990) with acronym 
MD/MC-CEM. As in the CEM method, the MD/MC-CEM approach is either first 
principle when based upon the SCF-LD embedding energies or semi-empirical when 
based upon the covalent embedding energies. Further approximations lead to the well 
known empirical embedded atom method (Daw and Baskes 1984, Daw 1989), and the 
very similar ‘glue’ model (Ercolessi et al. l986,1987a, 1987b, 1988) and Finnis-Sinclair 
model (Finnis and Sinclair 1984, Finnis et al. 1988). 

3.1. MDIMC-CEM theory 
The central approximation is the incorporation of AG into the embedding energies, 

1 AFJ(Ai ; .i)=1 ni) + A G ( { A i } ) ?  (3.1) 
where AF, is a new function of the jellium electron density. This yields the much simpler 
MD/MC-CEM form for the interaction energy: 

AE((A,} )=CAFJ(A,;  ni)+AV,. (3.2) 

AG({Ai}) C f ( A i  ; nil, (3.3) 

A formal justification of equation (3.1) requires 

where each f is an arbitrary function of the jellium electron density. This means that a 
functional of the total electron density and its gradient for a particular system is 
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22 T. J .  Raeker and A. E. DePristo 

approximated by a sum offunctions. Each of these functions pertains to a particular 
atom in the system and is supposedly universal in the sense of being independent of the 
particular system under study. If the electron density environment does not change too 
drastically, this will be an adequate approximation. 

For the covalent functions, AF,, we proceed just as in section 2.5, using the 
homonuclear diatomic binding and the monatomic bulk cohesive energy curves: 

(3.4 a) 

(3.4 b) 

Hence the new covalent functions are determined in an analogous way to the old 
functions. Some estimate of the validity of equations (3.4) can be determined by the 
smoothness of AF, as a function of electron density. However, one should not lose sight 
of the fact that the approximation in equation (3.2) underlies equation (3.4). Hence the 
accuracy and validity of the MD/MC-CEM formalism must be lower than those of the 
CEM formalism. 

The function AF, has been constructed for Ni and Pd using the same data as in 
section 2.5. As shown in figure 7, these functions are rather smooth just as for the 
functions AE, in figure 5 for the full CEM theory. By contrast, in figure 8, the AF, for A1 
and Scare clearly not as smooth as the analogous AEc in figure 6. Thus, the smoothness 
in the CEM embedding functions for Al, Ni and Pd does not correlate with accuracy in 
the MD/MC-CEM functions, where A1 is now much less smooth. This illustrates an 
important point. MD/MC-CEM provides a consistency check based upon the fact that 
lack of smoothness of AF, signals the non-universality of the function. Hence one 
would have to use caution in the interpretation of any results for A1 or Sc which 
depended upon the embedding function in the electron density region below the bulk 
values. 

Construction of AF, for heteronuclear systems can be more complicated unless the 
interactions are expected to be similar to the homonuclear case, in which case AF, can 
be used. If the bonding is expected to be ionic, then equation (3.2) with AEp on the right- 
hand side may be used. The question of the appropriateness of the embedding function 

AFdA, ;a= (AE(A1, AJ- w, 2)}/2, 
1 
2 j + l  

A F J A ,  ;%)=AE,,(A,)-- c K(17J. 

a 
n 

n 
0 

e I ec t ‘ on  dens I r y  C au; 

Figure 7. Same as figure 5 except for the MD/MC-CEM embedding function. 
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ot000 0.002 0.004 3.006 0.008 
e I ect  ron dens I ty ( ou 1 

Figure 8. Same as figure 7 except for A1 (0) and Sc (A). 

A F j  for any system is no different than for AEj. Thus, the same caution concerning 
strong electronegative and electropositive elements must be used as for the full CEM 
calculations. Indeed, a full CEM calculation can be performed for the system under 
consideration to determine the adequacy of the type of embedding function chosen. 
This information, in turn, may be used to determine AF,. 

As an example, AFp can be constructed for a single H atom interacting with Pd(ll1). 
For Pd the covalent embedding functions, AEc and AFc in figures 5 and 7 can be used. 
For H the binding interaction will be substantially ionic, implying that AEp(H) can be 
used. The CEM interaction energy of the H-Pd(ll1) system is then 

while the energy of the Pd(ll1) system without the H is 

AE((Pdi})O =CAEc(Pdi; no)+AI/,({Pdi))+AG({Pdi}). (3.6) 

The superscript 0 indicates that the H atom is absent. The analogous equations within 
the MD/MC-CEM formalism are 

AE(H, {Pdi})=AFp(H; nJ+xAFc(Pdi;ni)+AT/,(H, {Pdi)), (3.7) 

AE({Pdi})o=~AF,(Pdi;n~)+A~({Pdi}). (3-8) 
It is the additional interaction of H with Pd(l1 l), AE(H, {Pdi})-AE({Pdi})O, that is 
required to be reproduced by the two functions, AEAH ; n) and AFAH ; n), not the 
interaction energies, AE(H, { Pdi}). The latter include the surface energy of Pd(ll1) 
which will not be the same in CEM and MD/MC-CEM forms. In other words, 
AE({ Pdi})O, differs slightly between equations (3.6) and (3.8) because the function 
AFc(Pdi ; no) is guaranteed to duplicate the binding energy of Pd, and Pd(bulk), but not 
necessarily the surface energy. It would be inconsistent to include this disagreement in 
the Pd surface energy in the new H-atom embedding function. 
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A 2.0,  

a 

d 
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a 

d 

-2.0 
0.00 0.01 0.02 0.33 C.04 0.05 0.06 0.07 0.08 

e 1 ec i roq- =ens, iy ( QU 1 

Figure 9. The MDIMC-CEM embedding function for H ( A )  based upon transformation of the 
CEM calculations for the H-Pd( 11  1) interaction using the SCF-LD embedding function 
of Puska et al. (1981). See text for more details. 

Setting the difference, AE(H, (Pdi}) - AE((Pd,})O, equal between the two forms 
yields 

AF,(H;n,)=AE,(H; n,)+ AG(H, {Pdi})-AG((Pdi)) 

+I [AEc(Pdi;ni)-AEc(Pdi;nP)- (AFc(Pdi; ni)-AFc(Pdi; np)}]. (3.9) 
This expression defines the new embedding function for the H-atom in terms of 
quantities calculable by the full CEM form. In figure 9, the function AFp(H ; n) is shown. 
The latter is again quite smooth, implying that it could be used for other faces of Pd and 
other metals with acceptable accuracy. 

3.2. Embedded atom, ‘glue’ and Finnis-Sinclair methods 
These methods can be derived by making a number of further, uncontrolled 

approximations to the MD/MC-CEM method. First, consider equation (2.1 1 b) for the 
jellium electron density. Assume that the weight function n(A,; r - ri) is very peaked 
around the nucleus, allowing for extraction of n(Aj; r- Rj) at r = Ri and ignore the 
factor of + 

nZIEAM)= C n(Aj; IRi- Rjl). (3.10) 
i?j 

This is a so-called pointwise electron-density evaluation. Second, define a new 
embedding function by subtracting out the high electron-density linearly repulsive 
region: 

AF(EAM)(Ai ; ni) = AFdAi ; ni) - yini (3.11 a) 

where 

y i  = lim dAFc(Ai ; ni)/dni. (3.1 1 b) 

Due to the characteristic shape of AFc, the new functions, AF(EAM), will be negative for 
all densities. 

n i + m  
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Atom-homogeneous electron-gas bonding theory 25 

Using equations (3.10) and (3.11) in (3.2) and invoking equation (2 .7~)  yields the 
EAM expression: 

1 
AE({Ai))=~AF(EAM)(Ai;ni)+j 1 .1. V2(i,j) 

J C+J 

(3.12~) 

where the new two-body potentials are given by 

V2(i,j) = K(i,j) + 2yin(Aj; IRi - Rjl). (3.12 b) 

The EAM expression has not been developed along these lines previously. Instead, 
a completely empirical development has been used. Equation (3.12 a) has been simply 
postulated and the functions determined empirically (Daw and Baskes 1984, Daw 
1989). The densities, ni(r), were not taken from any atomic HF  or SCF-LD calculations 
but were arbitrarily represented as simple exponential functions. The two-body 
potentials have been represented almost always by a shielded Coulomb form: 

V2G,j) = zi(Rij)z,{Rij)/Rij, (3.13) 

where Z(r) is an effective nuclear charge as a function of separation. All functions are 
determined by fitting to experimental data. 

The Finnis-Sinclair method is similar to the EAM but builds in the further 
restriction that only nearest neighbours contribute to the determination of the jellium 
electron density. The ‘glue’ model uses exactly the same form as equation (3.12 a) but 
does not require tlfe two body forms to be totally repulsive or the embedding energy to 
be totally attractive. In addition, in the ‘glue’ model, an effective coordination function 
is used instead of an electron density function. 

3.3. Discussion of semi-empirical and empirical methods 
It is worthwhile to emphasize that in the empirical EAM, ‘glue’ and Finnis-Sinclair 

methods, one may use any form for the arbitrary functions and fit any appropriate 
experimental data (Garrison et al. 1988). Indeed, a form similar to the EAM one has 
been used in treatments of the dissociative chemisorption potential (Lee and DePristo 
l986,1987a, 1987b, Kara and DePristo 1988). In this method, the embedding energies 
were set equal to AEp, the densities used equation (3. lo), and the two-body potentials 
were represented as Morse forms. Adjustments were made to fit atomic chemisorption 
energies and dissociative chemisorption probabilities. 

The applicability of these empirical methods can only be determined by 
comparison with more accurate theoretical results or further experimental data. This 
limits their predictive ability, but such methods are still extremely useful: a good 
representation of a multi-dimensional PES can be critical. 

The empirical and semi-empirical methods all suffer from a lack of generality for 
both small non-periodic systems and large periodic systems. The MD/MC-CEM 
method incorporates some degree of generality since the two-body Coulomb forces 
involve non-empirical densities of the atoms. Furthermore, if the SCF-LD AEp are 
used, then AFp is not an empirical function at all since it is determined via equation (3.1) 
with ‘J = P‘. 

In contrast to CEM, MD/MC-CEM obviously cannot be expected to predict the 
interaction energies of both a diatomic and bulk system with similar accuracy. For 
example, a very contracted diatomic molecule may yield the same jellium electron 
density on each atom as occurs in a bulk system at equilibrium; the vast difference in 
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electron density environment would not be well described without AG. Equation (3.1) 
provides AF, which can only be single-valued for any one system in which there is just 
one independent distance and one independent jellium electron density. 

The pairwise additive Coulomb energies are attractive and the non-additive 
embedding energies are generally repulsive in MD/MC-CEM. This is exactly the 
opposite of the EAM form. Furthermore, the renormalization of the repulsions in 
equation (3.1 1 a) by moving the repulsive embedding energy part into the Coulomb 
energy is unsatisfactory. This makes the repulsions very complex in form, and in 
addition, forces the two-body potentials to be redetermined for each new pair of atoms 
in the EAM, ‘glue’ and FS methods unless one assumes that the shielded nuclear charge 
function Z,(R) is independent of local environment. By contrast, in MD/MC-CEM, the 
Coulomb integrals are known for any type of pair. Thus only the latter method predicts 
the behaviour between different types of atoms but the accuracy may be insufficient, of 
course. 

3.4. Calculation of forces and energies 
Molecular dynamics simulations require fast evaluation of derivatives and Monte 

Carlo methods require the same for the energy. While the empirical effective-medium- 
type theories presented in this section are clearly applicable to large systems without 
making the gross approximation of pairwise additive interactions, it would appear that 
the MD/MC-CEM method would be at a significant disadvantage. Owing to the 
complexity of the underlying computations in the MD/MC-CEM form, it is not 
obvious that this method can be applied to large systems, but MD/MC-CEM can be 
evaluated just as efficiently as the other methods, and we review the procedure here 
(Sanders et al. 1990). 

Define the overlap function 

S(i,j)= n(A,; r -  Ri)n(Aj; r -  Rj)dr. (3.14) 

Evaluation of forces requires efficient evaluation of K(i,j) and S(i,j) and their derivative 
with respect to nuclear coordinates. These involve simple two-dimensional integrals 
over the atomic densities. Direct evaluation of these integrals either numerically or 
analytically, using Gaussian or Slater-type basis functions, is much too slow. 

Fitting of some arbitrary function to the K(i, j)  and S(i,j) would not be a very general 
solution and, unless one was hcky in providing an accurate fit with a very simple 
function, the evaluation would still be rather time-consuming. For the desired 
accuracy, f eV in K(i,j) and & lo-’ bohr- in S(i, j ) ,  such a simple form would be 
extremely fortuitous. (Note that this accuracy is more than adequate for chemical 
energies but can easily be increased or decreased depending upon the function that is to 
be evaluated.) 

We illustrate a general numerical approach based upon function representation 
and smoothing in Chebyshev polynomials (Abramowitz and Stegun 1972). Only 
spherically symmetric densities are considered. Consider VJi, j ;  R )  where R = IRi - Rjl. 
First, the function is approximated by a Chebyshev expansion in x = R-’ on the range 
[ x < , x , ]  where x<=R;;= and x, =R;:: 
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Atom-homogeneous electron-gas bonding theory 27 

where is the Chebyshev polynomial of kth order and 

The expansion coefficients, V&j; k), are determined by numerical integration using 
Gauss-Chebyshev quadrature (Abramowitz and Stegun 1972). Less than 25 terms 
always represented K(i,j;R) to better than +10-4eV (and S ( i , j ; R )  to better than 
4 lo-’). Expanding in R-’ eliminates any square-root evaluations and effectively 
samples the function more in the small R region, where the function varies more 
rapidly, than in the large R region.? This fitting procedure provides an accurate 
representation of K(i,j; R )  along with continuous higher derivatives (well past any 
order of importance in the dynamics, force-constant evaluation, anharmonicity 
constant calculation etc.). The expansion is not evaluated directly in the dynamics since 
it would be too slow and since only smooth first derivatives are required for the forces. 

In the second step, the Chebyshev series representation is used to generate a set of 
function and first derivative values, {xk,fk,fk ; k = 1 , .  . . , M ) ,  wheref; is the derivative 
with respect to x. These are evaluated at points equally spaced in x with spacing 6x in 
the interval [x,,x>]. Interpolation of these points is then implemented by passing a 
piece-wise cubic polynomial through the set. Thus, for x, d x < x,+ 

K(i,.j; R ) =  K(i , j ;Ra)+d{Cl( i , j ;  a)+d[C2(i , j ;  a)+ dC3(i , j ;a)]}  

aK(i,j; R)/aR = { C l ( i , j ;  a) + d[2C2(i,j; a) + d[3C3(i,j; a)]}( -2/R3) 

(3.16 a) 

(3.16 b) 

where a is the interval in which x lies, C, is the coefficient of the kth power term, and 

d=x-x,. ( 3 . 1 6 ~ )  

Since the grid is evenly spaced in x, the interval is found directly as 

a = 1 + integer [(x - x ,)/Fx]. (3.16 d )  

The coefficients are determined by requiring equations (3.16a) and (3.16b) to be 
continuous throughout the interval [x <, x,]. Since higher order derivatives than the 
first derivative are accessible within the Chebyshev series representation higher order 
interpolation schemes can be used if needed. Equations (3.16a-d) are efficient 
computationally, since they do not require either square roots or an interval search. 
(Note that R 3  in equation ( 3 . 1 6 ~ )  need not be evaluated since it is multiplied by the 
directional factors ( X / R ,  Y/R, Z / R )  in the expression for the total force on any atom.) A 
similar interpolation scheme has been presented before by Andrea et ul. (1983). 

The final step concerns extrapolation outside the interval [x,, x,]. For x <x,, 
(i.e. R > R,,,), it is best to ensure continuity of the functions representing K(i,j) and 
S(i,j) and their derivatives. The extrapolation scheme requires both the function and its 
derivative to be zero at some cut-off point, xo = R ,  ’, and to be continuous with the 
interpolation scheme at x=x<. To ensure a monotonic approach of the function 
representing K(i, j )  and its derivative to zero, we also require that the second derivative 
with respect to x be non-positive at xo and the third derivative be non-positive for all 

~ ~ ~ ~ ~ 

7 It would be more efficient to expand in R2 but this effectively samples the function more at 
large R, where the function varies more slowly, leading to much larger storage requirements for 
the same accuracy. 
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x E [xo, xl]. These conditions specify the coefficients of the cubic polynomial and the 
possible locations of the cut-off. For x>x, (i.e. R<Rmin), extrapolation is done 
linearly. 

This procedure provides a complete solution to the representation of essentially any 
well behaved (one-dimensional) function and its derivatives. It depends critically upon 
the properties of Chebyshev series in providing a near minimax fit, and in the ability to 
generate the function at the relevant Gauss-Chebyshev points for evaluation of the 
coefficients in the series. This would be available for any analytic function, no matter 
how complex. 

The embedding function, AF,(Ai ; ni), poses an additional problem since it is known 
only at a small (< 20) set of points. These data are fitted to Chebyshev series using a 
weighted linear least-squares procedure. An estimate of the uncertainty of each point in 
the data set is used to determine its weight. This procedure allows the embedding 
energy values to adjust slightly to ensure smooth derivatives. The original data set can 
then be replaced by 30 points distributed along the fitting interval evaluated using this 
Chebyshev expansion. Once this larger adjusted data set is obtained, a quasi-Hermite 
spline of the points can be treated as an analytic function and the procedure leading to 
equations (3.16) followed with x =ni. 

To conclude this section, we provide the explicit force on any atom based upon 
equation (3.2): 

To evaluate this equation all the n, must be known. Consequently, it is impossible to 
evaluate f i  by one loop over all pairs formed by atom Ai with every other atom. 
Nonetheless, using the approach described above this complicated, many-body PES 
can be evaluated at approximately one-half the speed of a simplistic LJ(12,6) PES. For 
example, on a CRAY YMP with an efficiently vectorized program, using a constant 
step size of 10-l4s in the Verlet integrator3’ and evolving 256 active Cu atoms 
embedded in % 2 OOO fixed Cu atoms for 1 0 - l ’ ~  took 2.8 s using LJ(12,6) based forces 
and 4.7 s for MD/MC-CEM based forces. 

For the EAM, ‘glue’ and Finnis-Sinclair models, the above fitting procedure has 
not been implemented. Instead, either simple forms or straightforward spline 
interpolation have been used. This is understandable since the densities are only needed 
at one point, and even these densities have been just assumed to be simple exponential 
functions. 

4. Applications 
The effective-medium-type methods describe the many-body bonding present in 

metals (via the embedding energies) and are far superior to pairwise additive potentials. 
At the same time, these methods do not describe the electronic structure of the system 
explicitly, and thus are limited to description of the energetic variation with geometric 
arrangement. The MD/MC-CEM, EAM, ‘glue’, Finnis-Sinclair and EM methods are 
nearly as efficient to evaluate as simple pair potentials while even the more time 
consuming CEM method is still much faster than full ab initio or first-principles 
calculations. Thus the new methods are ideal for investigations of systems containing 
large number of atoms with low symmetry. Many such applications will be reviewed 
herein. 
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Atom-homogeneous electron-gas bonding theory 29 

It is worthwhile to indicate the steps in the set-up and use of each method. For a 

(1) construct atomic electron densities from the Gaussian fit to HF values; 
(2) compute electron density overlaps and evaluate the jellium densities, (n,}, from 

equation (2.1 1 b); 
(3) evaluate the embedding energies, (AE,(A, ; n,)}; 
(4) compute all pairwise Coulomb energies, c(i,j); 
(5) calculate AG; 

CEM calculation, one must: 

In a non-self-consistent calculation step 1 is done only once and steps 2-5 repeated for 
each new geometry. There are no adjustable parameters or empirical constructs in this 
prescription once the embedding energies are known. These are constructed either by 
fitting the CEM results to both the diatomic and bulk data on the respective 
homonuclear systems or from the SCF-LD calculations. Any further calculation on 
heterogeneous systems is predictive, as is any other homogeneous calculation (e.g. 
surface energy). 

For an EM calculation, one must: 

(1) construct induced atomic electron densities for the atom in jellium; 
(2) evaluate (n,}  from the electron density tails of the other atoms within the 

neutrality radius; 
(3) evaluate the embedding energies, {AE,,, i}; 
(4) compute atomic sphere corrections; 
(5) calculate the difference in one-electron energies between the real and atom-in- 

jellium systems. 

The neutrality radii and (ai> in equation (2.17) must be found once. Parameters for the 
calculation in step 5 must be determined from experiment. Since the atom-induced 
electron density determines the jellium electron density n, in step 2, one should iterate 
steps 1 and 2 to self-consistency. 

For a MD/MC-CEM calculation, one must: 

(1) construct atomic electron densities from the Gaussian fit to HF values; 
(2) compute electron density overlaps and evaluate the jellium densities, {n,} ,  from 

equation (2.1 1 b); 
(3) evaluate the embedding energies, (AF,(A, ; ni)}; 
(4) compute all pairwise Coulomb energies, K(i,j). 

As in the CEM method, the only possible empirical feature occurs if the covalent 
embedding functions are used. 

For an EAM, ‘glue’ and Finnis-Sinclair calculation, one must construct all parts of 
the energy: 

(1) empirical electron density functions; 
(2) empirical embedding energies, AFEAM); 
(3) empirical two-body potentials, V.(i,j). 

All of these parts must either be represented as some arbitrary functional form or as 
numerical data. Given steps 1-3, any calculation proceeds by evaluating the electron 
density functions at the centres of all other atoms and then using the embedding energy 
and two-body potentials. 
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The EAM, ‘glue’ and Finnis-Sinclair methods, being totally empirical, are much 
easier for the new user to apply. One is free to choose any functions and use any data to 
fit these functions. One must be cautious since the separation of two-body potentials 
and embedding energies is arbitrary because both are empirical. Thus one should re- 
determine these functions for all types of systems, and not use those for only the 
homonuclear system. 

Numerous applications of the above methods have been published in the literature 
over the past years and a complete review is not feasible. Here we summarize the 
applications to date and examine in detail a few which serve to illustrate and compare 
some of the weaknesses and strengths of the methods. In our opinion, the most 
important goal is to be able to employ these methods as tools to gain insight into the 
chemistry or physics of a particular process, not to reproduce experimental data. The 
few applications are chosen with this criterion in mind. 

4.1. List of applications 
The following is a list of various applications of the methods as determined by a 

computer search of the literature over the past twenty years. Some of these are simply 
tests of the methods to describe metallic bonding in situations other than in the bulk. 
Others are predictions either supporting or contradicting experimental data. We 
cannot vouch for the completeness of this list, but do feel that it is likely to display all 
the areas of applications. 

4.1.1. Metallic bonding 
Pure metals and alloys 

Cohesive andlor Formation energies (Maarleveld et al. 1986, Jacobsen et al. 1987, 
Redfield and Zangwill 1987, Foiles et al. 1984) 
Interface structures (Foiles et al. 1988, Foiles 1989) 
Fracture (Daw and Baskes 1987, Baskes et al. 1988) 
Segregation (Foiles 1985a, 1987a, Lundberg 1987, Underhill 1988, Stegerwald 
and Wynblatt 1988) 
Thermal expansion (Stoltze et al. 1987, Foiles and Adams 1989) 

Clean surfaces 
Structures ofalloy surfaces (Chen et al. 1986, 1989, Foiles and Daw 1987, Foiles 
1987b) 
Surface energies and relaxations (Daw and Baskes 1984, Foiles et al. 1986, Ting 
et al. 1988, Raeker and DePristo 1989, Sinnott et al. 1990) 
Surface reconstructions (Manninen and Nerrskov 1982, Daw 1986, Foiles 1987c, 
Daw and Foiles 1987a, Ercolessi et al. 1987a, b, Garfalo et al. 1987, Dodson 
1987a, Dondi et al. 1988, Jacobsen and Narrskov 1988, Dodson 1988) 

Phonons 
Surface (Nelson et al. 1988, Ningsheng et al. 1988a) 
Bulk (Daw and Hatcher 1985, Ningsheng et al. 1988b, 1989) 

Liquid metals 
Bulk properties (Foiles 1985b) 
Surface Melting (Carnevali et al. 1987, Stoltze et al. 1988) 
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Atom-homogeneous electron-gas bonding theory 31 

Epitaxy 
Metals on Metals (Voter 1988, Foiles 1987d, Dodson 1987b,c, Gilmore et al. 
1989, Raeker et al. 1990, Raeker and DePristo 1990) 

4.1.2. Chemisorption onlin metals 
Atomic chemisorption 

Binding energies and structures (Narrskov and Lang 1980, Narrskov, 1982, 1984, 
Chakraborty et al. 1985, Felter et al. 1986, Jacobsen and Narrskov 1986, 1987, 
Lundqvist et al. 1987, Daw and Foiles 1987b, Narrskov and Besenbacher 1987, 
Raeker and DePristo 1990) 
Vibrational analysis (Froyen et al. 1986, Holmberg et al. 1987) 
Desorption (Baskes 1984, Baskes et al. 1987, Avouris et al. 1988) 

Dissociative chemisorption 
Dynamics (Lee and DePristo 1986, 1987a, b, Kara and DePristo 1988, Truong 
et al. 1989) 
Structures (Foiles et al. 1987, Karimi and Vidali 1989a) 

Solvation of adsorbates in metals 
Hydrogen (Daw et al. 1983, Manninen et al. 1984, Jena et al. 1985, Nordlander et 
al. 1986, Puska et al. 1987, McMullen et al. 1987, Besenbacher et al. 1987, Batalla 
et al. 1987, McMullen et al. 1988). 
Oxygen (Ronay and Nordlander 1988) 

Atom-non-metal surface interactions: adsorption or scattering 
Noble Gases (Rao et al. 1985, Toigo and Cole 1985, Frigio et al. 1986, Karimi and 
Vidali 1987, Vidali and Karimi 1988, 1989) 
Hydrogen (Karimi and Vidali 1989) 

He in bulk metals 
Nielson (1985), Adams and Wolfer (1988), Wolfer et al. (1989) 

Ion-implantation in metals 
Besenbacher et al. (1985), Myers et al. (1985a, b, 1986,1989), Garrison et al. (1988) 

Semiconductors 
Baskes (1987), Baskes et al. (1989) 

4.2. Metallic bonding 
4.2.1. Bulk-metal cohesive energies 

The relative stability of the close-packed f.c.c. and h.c.p. structures versus the more 
open b.c.c. structures may provide insight into the generality of the present effective- 
medium-type methods. The CEM method has been used to determine the cohesive 
energies and equilibrium lattice structures for a number of metals in h.c.p., f.c.c. and 
b.c.c. type structures using BE,. For each type of atom, the embedding energy function 
is determined from the experimentally observed cohesive energy and structure. It is the 
relative stability which is of interest, since the absolute stability is correct by definition 
for the experimentally stable structure. 
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Table 1. The bulk nearest neighbour distances and cohesive energies as calculated by the CEM 
method using the embedding function AEc 

Atom Structure NND (bohr) C (bohr) A E C O ,  (ev) 

Al b.c.c. 5.278 - 3.370 
f.c.c. 5.399 - 3.388 
h.c.p. 5.41 1 8-837 - 3.388 

Fe b.c.c. 4.679 -4.278 
f.c.c. 4.833 -4.298 
h.c.p. 4.884 7-657 -4-286 

Ni b.c.c. 4.587 - 4.423 
tc.c. 4.693 - 4.439 

c u  b.c.c. 4701 - 3.470 
f.c.c. 4.8 13 - 3.486 
h.c.p. 4.823 7.877 - 3-486 

Rh b.c.c. 4.956 -5713 
f.c.c. 5.068 - 5.744 
h.c.p. 5.077 8.291 - 5.744 

Pd b.c.c. 5.076 - 3.857 
f.c.c. 5.188 - 3.886 
h.c.p. 5.197 8.488 - 3.886 

Ag b.c.c. 5.341 - 2.925 
f.c.c. 5.457 - 2.944 
h.c.p. 5.465 8.924 - 2.944 

W b.c.c. 5.164 - 8.888 
f.c.c. 5,323 - 8.929 
h.c.p. 5.378 8.43 1 -8.910 

Pt b.c.c. 5.104 - 5.790 
f.c.c. 5.222 - 5.837 
h.c.p. 5.238 8.553 - 5.848 

Au b.c.c. 5.326 - 3.770 
f.c.c. 5.435 - 3.809 
h.c.p. 5.451 8.902 - 3.807 

h.c.p. 4.703 7.680 -4.439 

From table 1 it is clear that the CEM method underestimates the stability of b.c.c. 
materials relative to the close-packed f.c.c. and h.c.p. structures, for example Fe and W 
are predicted to be slightly more stable as f.c.c. At the same time, CEM also predicts 
nearly equal stability for b.c.c. and f.c.c./h.c.p. materials, albeit at different bond lengths. 
Since CEM explicitly includes the effect of electron density inhomogeneity in the AG 
term, it is evidently the sphericalization of the atomic electron density that leads to this 
underestimation. We expect other effective-medium-type methods to favour the f.c.c./ 
h.c.p. structures even more strongly. Thus one must be cautious in using these theories 
to predict structures and energetic differences associated with bulk materials. 

4.2.2. Properties of clean surfaces 
With the exception of CEM using AE, and EM, the methods discussed in this 

review, except EM, describe bulk metallic bonding accurately within a particular 
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Atom-homogeneous electron-gas bonding theory 33  

structure by construction. In CEM and MD/MC-CEM, AEc of the metal atom is fitted 
to reproduce the correct bulk cohesive energy, lattice constant and bulk modulus. In 
the EAM, ‘glue’ and Finnis-Sinclair methods, the electron density functions, embedd- 
ing and two-body terms are fitted to the cohesive energy, lattice constant, bulk 
modulus, bulk vacancy formation energy and the elastic constants cI2  and c4& The EM 
method does not adjust its functions to experimental data and thus is not guaranteed to 
reproduce the bulk metallic properties. 

Many-body interactions are incorporated within each of the methods. In the CEM 
method, these are included through the embedding function and the correction ( A C )  
energies in equation ( 2 . 5 ~ ) .  In contrast, the EM, MD/MC-CEM, EAM, ‘glue’ and 
Finnis-Sinclair models all rely solely on the embedding function. 

Since bulk metals are described accurately, prediction of the properties of metal 
surfaces is a test of the ability of these methods to describe properly the changes in many 
body metallic bonding with coordination and separation. A successful description of 
bonding at surfaces will lead to confidence in predictions of other properties where 
experimental data is either lacking or requires theoretical input for interpretation. 
4.2.3. Surface energies 

Focus on the energy (not free energy) required to cleave a bulk crystal and expose a 
particular surface geometry. Since this energy is proportional to the amount of surface 
area, the energy is divided by the total surface area of both newly exposed surfaces and 
the resulting intensive quantity reported as the surface energy. 

The surface energy 0 of a semi-infinite surface within CEM is easily calculated as 

AEa- AE,,, 
0= c 

A , 
where AEa is the layer cohesive energy as calculated in equation (2.19, AE,,, is the bulk 
cohesive energy in equation (2.14) and A is the surface unit-cell area. The sum is over N 
surface layers leading into the bulk where the bulk cohesive energy is eventually 
reached after three to four layers. This same expression is used for MD/MC-CEM, 
EAM, ‘glue’ and Finnis-Sinclair models with appropriate expressions for AEa. 

Within the EM method, the surface energy is calculated analytically (Jacobsen et al. 
1987) assuming no surface relaxation and only variation of bonding for the surface 
layer. For N nearest-neighbour atoms in the bulk, we get 

a=C[1 - { N / 1 2 } ~ ~ B ~ 2 ] 2 + a n , [ ( N / 1 2 } ~ ~ 1 8 ~ z - N / 1 2 ] / A  (4.2.) 

which includes only the quadratic term in their cohesive energy expression. The q 
values are the atom exponential electron density parameters; B is the Wigner-Seitz 
radius ratio; and no is the equilibrium electron density. 

Figure 10 shows three low-Miller-index surfaces of a f.c.c. crystal that are examined 
here. Clearly a substantial change in the many-body bonding character occurs for 
metal atoms on and near the surface as compared to the bulk. Surface atoms are 
significantly destabilized by the loss of their neighbours above the plane. This loss is 
also face-specific since the number and distance to the neighbours differs with face. 
Thus the surface energy is a function of the exposed surface, with a high surface energy 
indicating significant instability. This instability may be manifest in structural changes 
such as relaxation and reconstruction. 

We shall examine the surface energies of four different metals, each in a different row 
on the periodic table. The quality of the results and the trends for these are similar for 
the other metals in the same row and thus arguments made about these test cases are 
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Figure 10. Top view of the f.c.c. (1 1 l), (100) and (1 10) surfaces. 

general and easily transferable. The simple metals are represented by Al, the 3d metals 
by Ni, the 4d by Pd, and the 5d by Pt and Au. Complex metals with substantial d-d 
bonding are not considered since current effective medium type theories do not 
describe accurately their structural energy variations. 

In table 2 we show the most recent CEM and MD/MC-CEM (Sinnott et al. 1990) 
and EAM surface energies (Foiles et al. 1986) for the low-index surfaces of the above 
metals. The agreement with experimental data is quite good for both types of CEM 
calculations, especially since the experimental data is an average over a polycrystalline 
surface. Previous CEM surface energy values (Raeker and DePristo 1989) for some 
transition metals were about 5% larger than those in table 2. The values here are more 
accurate since they have used a more accurate Gaussian representation of the atomic 
HF densities, better numerical evaluation of the correction integral and more accurate 
interpolation of the embedding function between the lower electron-density diatomic 
and higher electron-density bulk points. The surface energies confirm that changes 
in the metallic bonding on surfaces are accurately described by both CEM and 
MD/MC-CEM. Also note that the surface energy increases with increasing openness of 
the surface. 

Comparing the results from the two different CEM methods, one finds that for the 
transition metals the surface energies in MD/MC-CEM are always slightly higher. This 
results from the negative contribution to the surface energy from the correction energy 
(cAG). The approximation of a smooth interpolation of the correction energy between 
the diatomic and bulk regions of the electron density does not reproduce the effect of 
the actual calculation of the correction energy. 
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Atom-homogeneous electron-gas bonding theory 35 

Table 2. Surface energies (Jm-') for relaxed geometries of various metals. 

Face Al Ni Pd Pt Au Method 

(1 11) 1.120 1.954 1.651 2.002 1.198" CEM 
0.866 2.363 1.906 2.252 1.423b MD/MC-CEM 

0247d 1.450 1.220 1.440 0.790' EAM 
1.184 2.063 1.756 2.157 1.296" CEM 
0.95 1 

0370d 1.580 1.370 1.650 0918' EAM 
(1 10) 1.278 2.230 1.885 2-312 1.384" CEM 

1.047 2.696 2.193 2.615 1*664b MD/MC-CEM 

0509d 1.730 1.490 1.750 0980" EAM 

1.410" GLUE 

2.414 2.023 2.428 1.543b MD/MC-CEM 
(100) 

1.635" GLUE 

1.718" GLUE 

Expt. 1.143 2.380 2.000 2.490 1.5Wf 

"CEM (Sinnott et al. 1990). 

" GLUE (Ecolessi et al. 1987), includes surface reconstruction. 
dEAM (Ting et al. 1989). 

MD/MC-CEM (Sinnott et al. 1990). 

EAM (Foiles et al. 1986). 
Experimental data on polycrystalline surfaces (Tyson and Miller 1977). 

The EAM results consistently yield surface energies that are much too small 
compared to experiment. In other words, the cohesive energies of the surface atoms are 
calculated to be much too close to the bulk cohesive energy. The EAM functions do not 
vary quickly enough with the loss of neighbouring atoms. Previous EAM calculations 
(Daw and Baskes 1984) also underestimated the surface energies of Ni and Pd. The 
magnitudes were 1.31 JrnA2, 1-55 Jm-' and 1.74Jm-' for the Ni(lll), 100 and (110) 
surfaces respectively; and 1.07 J mP2, 1.27 J mP2  and 1.39 J mP2 for Pd. This 
disagreement is difficult to understand since the empirical parameters in the EAM 
functions were required to reproduce the vacancy formation energy of the metal as well 
as the bulk cohesive energy and lattice constant. The former should make the empirical 
functions in EAM describe coordination changes adequately, but the lack of agreement 
suggests that this is not the case. Alternatively, it may be that the particular separation 
into two-body and embedding energies is not correct, but is not sensitive to any bulk 
data which only changes the coordination slightly. 

Further EAM calculations of the surface energies of Ni and Cu (Foiles 1985) also 
resulted in low values. The EAM functions for these calculations were fitted to the 
above mentioned data and also to the dilute heats of solution of the binary alloys of Cu 
and Ni. The new EAM functions for Ni resulted in slightly higher surface energies: 
1.65 Jm-', 1.78 Jm-'and 1.94JmP2for the(lll),(100)and(llO)surfacesrespectively. 
These values are still significantly smaller than the experimental data. The more recent 
calculations of the surface energies in table 2 were the result of fitting the EAM 
functions in the same manner as previously done for Cu and Ni, but with a larger base 
of heats of solution for the binary alloys of Cu, Ag, Au, Ni, Pd and Pt. Ting et al. (1988) 
also independently fitted EAM functions to experimental bulk data, without alloy data, 
for the Ni, Pd, Pt and Au systems. They still consistently underestimated the surface 
energies. 
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The EM method has also been applied to the calculation of the surface energies for 
A1 surfaces (Jacobsen et al. 1987), yielding good results. They obtain values of 0.701, 
0.830 and 0.883 Jm-’ for the ( l l l ) ,  (100) and (110) surfaces respectively, compared to 
the experimental value of 1.143 Jm-’. These underestimate the experimental value but 
are not nearly as small as the EAM results in table 2. 

We emphasize that it is now possible to predict the surface energies of metals with 
good accuracy for spcific faces, using the CEM and MD/MC-CEM methods. The EM 
method has not been applied to enough metals to be certain, but it appears that it is 
slightly less accurate than either the CEM or MD/MC-CEM approaches. By contrast, 
the EAM method substantially underestimates surface energies. This underestimation 
is not due to the non-uniqueness of the EAM functions, which only causes a slight 
variation of surface energies. Instead, it appears that the EAM method does not 
describe properly the variation of metallic bonding with coordination over the 
coordination range 6-12. 

It is interesting to ask why EAM underestimates surface energies while the CEM 
and EM methods are more accurate, although the EM results for A1 are still smaller 
than experiment. The reason is not certain, but we can correlate this behaviour with the 
form of the interactions in each method. It has been calculated from SCF-LD 
calculations (Puska et al. 1981, Puska 1988, private communication) that the 
embedding energy of metals is positive with positive slope at the densities in the bulk. 
By contast, the EAM embedding energy is parametrized to become increasingly 
negative with increasing electron density while the pairwise potential is the repulsive 
term. While any linear term in the embedding energy can be incorporated into the 
pairwise potential as in equation (3.12 b), it may be that fitting directly with attractive 
embedding and repulsive two-body terms is not accurate. This suggests that the 
current form of the EAM parametrization is most likely the root of EAM’s inability to 
accurately predict the surface energies. 

As further evidence, we note that both the CEM and EM methods provide better 
surface energies while using embedding functions that are positive and pairwise 
interactions that are negative. The slight underestimation in the EM method may be 
due to the aini term in equation (2.18b) that makes the overall embedding energy 
negative. This then will result in the same difficulty as the EAM but not to the same 
extreme. Further evidence comes from the ‘glue’ model results for Au which are quite 
good; the ‘glue’ model uses different embedding, electron density and two-body 
functions that are much more in accord with the SCF-LD embedding functions. 

The above argument is speculative. It is not known why the EAM underestimates 
the surface energies, and, in most of the literature, it is concluded that EAM values are 
in good agreement with experimental data. This is true when compared to predictions 
of simple potentials. However, it is now clear that these surface energies can be 
calculated much more accurately with other effective-medium-type methods. 

4.2.4. Surface relaxation of A1 
Minimization of the surface energy will lead to relaxation or reconstruction of the 

surface. The former simply changes the separation between planes of atoms near the 
surface (typically reported as percentage changes relative to the bulk planar separation) 
as illustrated in figure 11. Reconstruction changes the in-plane geometries of the surface 
atoms, and is generally accompanied by relaxation. Both phenomena can be examined 
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Atom-homogeneous electron-gas bonding theory 37 

Figure 11.  Side view of the f.c.c. (1 10) surface, d , ,  denotes the distance between layers 1 and 2, 
d, ,  for layers 2 and 3. 

by any of the effective-medium-type methods, which are efficient computationally and, 
in principle, describe coordination changes properly. In the following sections we shall 
compare the predictions of the relaxations by the different methods. We have already 
seen that there is a wide range in the calculated surface energies and that perhaps this 
may be the case for the magnitudes and even directions of relaxation. 

Experimental data indicate that in general the top layer atoms of the surface 
contract towards the layer below, the contraction increasing for more open surfaces. 
The f.c.c. (1 10) surface is observed to exhibit an oscillatory multilayer relaxation with 
the top layer spacing contracting, the second layer spacing expanding and so on, down 
to about four layers. First principles SCF-LD calculations by Ho and Bonhen (1985) 
confirm this feature and indicate that the energy of relaxation is of the order of 
millielectron volts per surface atom. The CEM, EM, EAM and ‘glue’ model methods 
have all been applied to the problem of surface relaxation and reconstruction with 
varying degrees of success. For the case of CEM, we shall explain the driving forces for 
relaxation and discuss their relevance to the other two methods. 

As a first test, we consider Al, which is a nearly free-electron metal and thus should 
make the atom-in-jellium approximation very good. In table 3 we show results for the 
relaxation of Al surfaces. All these methods show that the top layer of all three A1 
surfaces contract, with the contraction increasing for Al(11 l)-+Al(lOO)-+Al(l lo), but 
the predicted magnitudes are clearly different. 

In general the CEM, MD/MC-CEM and EM results for the (1  1 1) and (100) surfaces 
are in good agreement with available experimental data. While the experimentally 
observed (1 1 1 )  top-layer distance expansion is an exception to the general rule of 
contraction, note that the most recent CEM and EM calculations predict only a very 
small contraction of around 1% limited to either the top or one subsurface layer. On the 
other hand, EAM consistently predicts much larger relaxations as far down as four 
layer spacings deep. The authors make no attempt to explain these predictions. 

The results for the (110) surface show that EAM overestimates while CEM, 
MD/MC-CEM and EM underestimate the degree of multilayer relaxation. For the 
first set of EAM values (Ting et al. 1988) note that the multiple contractions predicted 
for the (1 11)  and (100) surfaces do not appear for the (1 10) surface. The reason for this 
drastic change in behaviour is unknown to us and was not discussed by the authors. In 
addition, the second set of EAM results (Chen et al. 1986) are in almost exact agreement 
with the first set for Al(110). This agreement is surprising since different two-body 
potentials (Morse versus shielded Coulomb) and embedding functions were used. It 
would be interesting to know the surface energy as calculated by Chen et al. (1986), but 
this was not reported. The first set of CEM calculations (Raeker and DePristo 1989) 
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Table 3. Surface relaxation of the (1 1 I), (100) and (1 10) surfaces of Al. 

(111) - 1.0 
(- 3.0 
- 0.5 
-1 
- 3.26 

1.85' 

(100) - 0.6 
( - 5.0 
- 2.0 
-3 
- 4.90 
- 2.29 

- 7.5 

- 7.0 
-7 

(-9.5 
(110) 

- 10.47 
- 10.36 
- 8.6 

- 0.5 
0.5 
0.0 
0 

- 1.70 - 1.76 

1.120" 
1.096") 
0866' 
0*701d 

-1.83 0.247' 

- 0.6 
3.5 
0.5 
0 

- 2.24 

- 1.5 
5.5 
1.5 
0 
3.64 
3.23 
5.0 

0.5 
0.5 

- 2.25 

- 0.5 
- 1.5 
- 1.0 

- 2.93 
- 258 
- 1.6' 

1.184" 
1.158") 
095 1 
0.830d 

-2.39 0.370' 

1.278" 
1 .o 1.265") 
1 .o 1.047' 

0.883d 
-1.45 0.508' 
- 1.58h 

CEM 
CEM 

EM 
EAM 
expt. 

CEM 
CEM 
MD/MC-CEM 
EM 
EAM 
expt. 

CEM 
CEM 

EM 
EAM 
EAM 
expt. 

MD/MC-CEM 

MD/MC-CEM 

a CEM from Sinnott et aI. (1990). 
'CEM from Raeker and DePristo (1989). 
' MD/MC-CEM from Sinnott et al. (1990). 

EM from Jacobsen and Nsrskov (1989). 
' EAM from Ting et al. (1989). 
Experimental data from Noonan and Davis (1990). 
Experimental data from Bianconi and Bachrach (1974). 

Experimental data from Anderson et al. (1984), 
' EAM from Chen et al. (1986). 

show excellent agreement with experimental data. The loss of second- and third-layer 
relaxations after the method was computationally improved is discussed in the next 
subsection on relaxation of Ni surfaces. 

The data in table 3 are indicative of the relative accuracies of each method. In the 
case of CEM the improvement in the A1 surface energies after the method was improved 
to increase numerical precision results in worse agreement for the relaxation of Al(110) 
but better results for Al(100) and Al(111). EM is very similar to CEM. In the case of 
EAM the results show sporadic behaviour in relaxation. When coupled with the poor 
surface energies, one might be inclined to doubt the predictions. The non-uniqueness of 
the EAM functions do not have much of an effect on the relaxation, at least for Al(110). 

4.2.5. Surface relaxation of Ni 
The relaxation of Ni surfaces has also been studied twice by CEM (Raeker and 

DePristo 1989, Sinnott et al. 1990) and a number of times by EAM (Daw 1984, Foiles 
1985, Foiles et al. 1986, Chen et al. 1986, Ting et al. 1988) calculations. In table 4 we 
summarize a collection of calculated and experimental relaxation data for Ni surfaces. 
The results vary in detail but all calculations agree that the top layer contracts for the 
(lll),  (100) and (110) surfaces. 
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Atom-homogeneous electron-gas bonding theory 39 

First consider the CEM results which, in principle, should not differ between two 
calculations since the embedding energy is determined in the same way for both. In 
practice, the two sets of CEM calculations differ substantially, just as for Al. The first 
(Raeker and DePristo 1989) gave a substantial expansion in the second layer distance 
for the (1 10) and (100) surfaces while the newer results indicate smaller relaxation of the 
second- and third-layer distances (Sinnott et al. 1990). The reason for this behaviour is 
the use of the additive atomic electron density Ansatz, as discussed in more detail at the 
end of this subsection. For now, we simply note that MD/MC-CEM yields smaller 
relaxations, indicating the importance of the correction energy. 

We examine this further in figure 12, which displays the changes of the CEM energy 
components during relaxation. The energies are plotted as a function of the magnitude 
of the top-layer relaxation of the Ni( 100) surface for fixed second and subsequent layers. 
It is apparent that the embedding and Coulomb energies do not allow any contraction 
of the top layer distance spacing for this surface, as seen in table 4 for the MD/MC- 
CEM calculations. (The embedding functions are not the same in CEM and MD/MC- 
CEM, but they yield the same behaviour here.) It is the correction term, AG, which is 
responsible for the contraction in CEM theory. It is a continually decreasing function 

Table 4. Surface relaxations of the ( l l l ) ,  (100) and (110) surfaces of Ni. 

Ad12 Ad23 Ad34 Ad45 fJ Method 

- 2.5 
00 

- 246 
- 0.54 
- 1.85 
- 1.2' 

(1 11) 

( 100) - 3.2 
(- 3.5 

1 *o 
- 3.4 
- 0.23 
- 3.04 
- 3.2h 

(1 10) - 7.8 
(-9.5 
- 1.5 
- 8.8 
-2.1 
-7.01 
- 8.7 

0.0 
0.0 

0.0 
- 0.04 

0.0 
2 0  
0.0 0.0 

0.1 1 
-0.35 - 0.02 

0 5  
4.0 - 1.5 
1 -0 - 0-5 

007 
1.84 - 0.98 
3.0 - 0.50' 

1.954" 
2363b 
1.310" 
1.450d 
1.284' 

2.063" 
2.320g) 
2.474b 
1550" 
1.580d 
1.535' 

2.230" 
1 .o 2.5923 
0.5 2.696b 

1.740" 
1.730d 

0.34 1.733" 

CEM 

EAM 
EAM 
EAM 
expt. 

CEM 
CEM 

EAM 
EAM 
EAM 
expt. 

CEM 
CEM 

EAM 
EAM 
EAM 
expt. 

MD/MC-CEM 

MD/MC-CEM 

MD/MC-CEM 

"CEM from Sinnott et al. (1990). 
MD/MC-CEM from Sinnott et al. (1990). 
EAM from Daw and Baskes (1984). 
EAM from Foiles et al. (1986). 
EAM from Ting et al. (1988). 
Experimental data from Demuth et al. (1975). 

Experimental data from Frenken et al. (1983). 
Experimental data from Adams et al. (1985). 

gCEM from Raeker and DePristo (1989). 
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Figure 12. Plots of the changes in the CEM energy components due to relaxation of the Ni(100) 
top layer distance (0) surface energy (ev), (A)  sum of embedding and Coulomb energies 
(AE, + AV), (0) correction energy (AG). 

of the contraction which, when combined with the above embedding and Coulomb 
energies, has a minimum around a 3% contraction as in table 4 for Ni(100). We 
conclude that relaxation occurs in order to smooth the electron density (which lowers 
the correction energy) near the surface. This type of smoothing argument has 
previously been discussed by Zangwill (1 988) using jellium ideas. 

The first EAM calculations (Daw and Baskes 1984) of Ni relaxation provided top- 
layer contractions in reasonable agreement with experiment. It would seem at first 
glance that the already discussed underestimation of the surface energies is 
unimportant for surface relaxation. Additional calculations (Foiles et al. 1986) using a 
different set of EAM functions that changed the surface energies only slightly, however, 
resulted in very different relaxations that are in disagreement with experiment. More 
recent EAM calculations (Ting et al. 1988) predicted relaxations that are slightly 
smaller than experiment and which show an expansion of the second layer distance for 
the (1 10) surface. 

Thus the unusual situation arises in which each independent EAM calculation 
results in significant differences in relaxation with only very small differences in the 
surface energies. In other words, the accuracy of the surface relaxation is not dependent 
on the accuracy of the surface energy, which is certainly counter-intuitive. However, 
when one realizes that the variation of surface energy with relaxation is a very small 
fraction of the surface energy, it is apparent that the calculated relaxations must be 
extremely sensitive to the fitting of the EAM functions to experimental bulk data. 
Changing the functions to reproduce a particular bulk property has serious 
consequences for another, at least for relaxation, even though the non-uniqueness of 
the EAM functions does not change surface energies substantially. 

The CEM method does not predict the correct relaxation in the second and third 
layer distance spacings. This problem is a consequence of the use of atomic electron 
densities, as we shall now clarify. The previous CEM calculations of Raeker and 
DePristo (1989) used even-tempered Gaussian basis functions that were fitted to the 
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HF atomic electron density, but the tails of the Gaussian densities were larger and of 
longer range than the HF  densities. This electron density produced the large 
relaxations observed in tables 3 and 4. We have recently provided a much better fit of 
the HF electron density, and use of this new electron density produced smaller 
relaxations (Sinnott et al. 1990). This is a significant correlation because the electron 
density in a bulk solid is more delocalized than the superposition offree-atom densities. 
The poorly fitted Gaussians (unintentionally) mimicked this delocalization, leading to 
larger overlaps and thus sensitivities of the second-layer atoms to contraction of the 
first layer. From this argument we see that the approximation of atomic electron- 
density superposition is likely to be the cause of the underestimation of the multilayer 
relaxations. 

In summary, all three of the methods at least predict that the top-layer distance of a 
surface is contracted. The large variation of the relaxations in the second and deeper 
layers indicates weakness in each method that must be overcome if they are to be used 
as quantitative tools in studying such phenomena on surfaces. We suggest that accurate 
first-principles calculations on a number of surface systems be used to determine the 
surface energies and relaxations, especially for the second- and third-layer spacings. 
These data would be of great utility in determining what is required of effective- 
medium-type methods to achieve the proper surface energies and relaxations. 

4.2.6. Surface reconstruction 0ffc.c.  ( 1  10) surfaces 
Reconstructions of metal surfaces have been well documented in the literature 

and in some cases the mode of reconstruction has been established. An important 
question is whether the effective-medium-type methods predict both the occurrence of 
reconstruction and the correct reconstructed structure. Although the small surface 
energy changes upon relaxation are not described consistently by any of the methods, 
the extension to reconstruction is a natural step since it may lead to large changes in the 
surface energy. 

One type of reconstruction that has been studied by a number of the effective 
medium type methods is the f.c.c. (110) (1 x 2) reconstruction. LEED measurements 
(Moritz and Wolf 1985, Chan and Van Hove 1986) have been done on Au(l10) and 

(1x1) fC.C.(llO) 

(1x2) MI1 f.C.C.(llO) 

Figure 13. Side view of the (1 x 1) f.c.c. (1 10) surface and the (1 x 2) MR surface. 
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Pt(ll0) revealing a (1 x 2) pattern. The missing row (MR) structure in figure 13, where 
every other (01 1) row is missing, has consistently been the model of choice. The driving 
force for the (1 x 2) MR structure is believed to be faceting to expose the more stable 
(1 11) surface plane in the long troughs of the surface. 

Generally, all the methods have been employed to determine if the (1 x 2) MR 
surface has a lower surface energy than the ideal (1 x 1) or other (1 x 2) structures. Each 
has confirmed that the (1 x 2) MR model has a lower, or at least the same, surface 
energy as the (1 x 1) structure and that relaxations are present as well. 

The ‘glue’ model has been applied only to the reconstruction of Au surfaces 
(Ercolessi et al. 1987, Garofalo et al. 1987). The surface energies are calculated to be 
(Ercolessi et al. 1987) 1-410, 1.635 and 1.718 Jm-’ for the reconstructed (l l l) ,  (100) and 
(1 10) surfaces respectively, compared to an experimental value of 15OO J m-2 
for a polycrystaline sample. Agreement with experiment is quite good, demonstrating 
that the ‘glue’ model predicts correctly the instability of these reconstructed surfaces. In 
particular, note that the (111) surface has a much lower surface energy than the (1 10) 
surface. 

Molecular-dynamics simulations were used to search for an energetically 
favourable structure of a particular (1 x n) missing row configuration. Here (n) stands 
for (n - 1) empty rows between fixed rows of atoms in the top layer and (n - 2) empty 
rows in the second layer and so on for n > 3. The (1 x 2) MR structure was the most 
stable of the configurations and displayed contractions of 27-5%, 4.7% and 2.2% in the 
first through third layer spacings respectively. The energy of reconstruction is 
calculated to be 0.688 Jm-’ relative to the bulk terminated (110) surface, with 
relaxation contributing the most to the greater stability of the (1 x 2) MR surface. 

For the unreconstructed surface, they calculated a contraction of 33.9% for the first 
reconstructions followed by expansions of 6.9% and 1.3% in the second and third 
layers, respectively. The energy of simply relaxing the (1 x 1) surface was calculated to 
be 0.446 Jm-2. This yields an energy of reconstruction relative to the relaxed (1 x 1) 
surface of 0242 J m- ’. 

The calculated (1 x 2) layer spacings differ greatly from the experimental results of 
contraction by 18-20%, expansion by 2 4 %  and contraction by 2% in the first three 
layers, respectively (Moritz and Wolf 1985, Cope1 and Gustafsson 1986). It is very 
surprising that the (1 x 1) structure is predicted to contract more than the open (1 x 2) 
structure. 

The EAM was also used to examine the Au(l10) (1 x 2) MR surface (Foiles 1987), 
confirming that the MR model is indeed the most stable structure. The EAM functions 
were those used in calculation of the surface energies in table 2. The energy of 
reconstruction to the most stable (1 x 2) MR structure was calculated to be 0.368 J m-’ 
relative to the relaxed (1 10) surface above, a slightly larger value than that of the ‘glue’ 
model. This work showed a contraction of the top three layer spacings of 14.6%, 4.8% 
and 0.7% with small pairings and buckling in the second- and third-layer atoms 
respectively. 

More recent EAM Monte Carlo calculations (Daw and Foiles 1987) on the order- 
disorder transition of the (1 x 2) MR Au(l10) surface showed a transition temperature 
of 570 K compared to an experimental LEED-determined transition at 650 K. These 
calculations followed the transition of an original (1 x 2) MR structure to a disordered 
one with the same coverage of surface atoms. 

Just as in the ‘glue’ model, the EAM calculations determined that relaxation was 
not required for the increased stability of the (1 x 2) over (1 x 1) surfaces. This is difficult 
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to understand. We would expect the loss of neighbours by the surface atoms during 
reconstruction to cause destabilization and thus increase the surface energy. To lower 
the surface energy, the surface would contract just as was seen for the clean 
unreconstructed surfaces in the previous discussions. 

It is seen experimentally that the clean f.c.c. (110) surfaces of only Ir, Pt and Au 
reconstruct. The (110) surfaces of Ni, Cu, Rh, Pd, and Ag can be induced to a (1 x 2) 
reconstruction by adsorption of alkali metals, in particular by K, with the proposed 
structure being very similar to the MR one. The EM method has been applied to the K 
on Cu(ll0) system (Jacobsen and Narrskov 1988). The K atoms bind in the open centre 
sites vacated by Cu atoms from the (1 x 1) structure. Being so large, they can stabilize 
the Cu atoms in the remaining rows. At higher coverage, repulsions among the K atoms 
prevent binding in these open sites. Thus the EM results indicate that the large size of 
the K atom at low coverage is the main reason for the induced MR reconstruction, with 
higher K coverage inhibiting this structure. This is a good example of the usefulness of 
the EM method in understanding the physics of a process and not just in reproducing 
experimental numbers. 

4.2.7. Surface segregation 
In this section we consider the properties of binary metal alloys, a more chemical 

problem. Binary alloys often have properties, such as catalytic activity and strength, 
that differ from those of the separate components. An understanding of the processes 
that limit alloying is very important. The segregation of one of the components to the 
surface, causing an enrichment of that atom type relative to the bulk concentration, is 
one such process. It is well established (Ossi 1988 and references therein) that surface 
segregation occurs for many mixtures. 

A number of simple statistical theories (Mediema 1978, Chelikowsky 1984, 
Mukherjee and Moran-Lopez 1987) have been introduced based upon the premise that 
the relative surface energies are important driving factors for surface segregation. The 
metal with the lower surface energy is enriched at the surface. A limitation of these 
theories however, is the inability to predict quantitatively the degree of segregation. An 
alternative to statistical theories is an atom-based approach which correctly describes 
the relative surface energies of the components in binary alloys and is efficient enough 
computationally to treat many atoms in a low-symmetry environment. All of the 
effective-medium-type theories, with the (possible) exception of the more 
computationally demanding CEM method, are applicable directly. 

For the particular case of the EAM method, the fact that the EAM functions are 
fitted to the dilute heats of solutions of binary alloys and bulk vacancy energies would 
lead one to expect a proper description of the segregation process. Although the EAM 
has been applied to many alloy systems, as examples we will examine the Cu-Ni(ll1) 
(Foiles 1985a) and, briefly, the Ni-Pt (Lundberg 1987) systems. 

From table 2, it can be seen that in EAM the Cu(ll1) surface has a smaller surface 
energy than Ni(ll1). The first calculated quantity was the segregation energy of one 
impurity atom (Cu) to the Ni( 11 1) surface (Foiles 1985a). This was determined as the 
total energy of the slab with one impurity atom in the surface layer minus the total 
energy of the slab with one impurity atom in the bulk. This yielded values of -0.426 
and -0-304eV for Cu in Ni(100) and Ni(ll1) respectively. The former should be 
compared to an experimental estimate of -0.43eV for Cu in Ni(100) (Egelhoff 1983, 
1984). This agreement is probably fortuitously good since the EAM functions were 
fitted to the dilute heats of solutions and thus the Cu impurity in bulk Ni is exact. The 
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other part of the calculation, involving the surface-energy values, would not be 
expected to be this accurate based on table 2. Irrespective of the numerical accuracy, the 
EAM results indicated that in Cu,Ni, -, alloys Cu would segregate to the surface and 
this segregation would be face-sensitive. 

Monte Carlo calculations of the composition using the EAM (Foiles 1985a) yielded 
the results shown in figure 14, which were in good agreement with experimental data. 
Interestingly, the calculations also suggested that the second layer is in turn enriched in 
Ni atoms. No explanation was offered for this phenomenon. It could result from kinetic 
limitations or too few Monte Carlo moves, or could be a real equilibrium effect. It is 
certainly worth further study. 

In calculations performed for this review, Sinnott has applied the CEM method to a 
single Cu atom in Ni(100), not in a dynamical simulation, but just to calculate the 
surface segregation energy. The prediction of - 0.3 eV is in good agreement with 
Egelhoff s value, especially when one remembers that the CEM embedding functions 
for Cu and Ni are determined solely by the homogeneous bulk and diatomic systems. A 
similar calculation for an entire Cu layer in Ni(100) predicts - 0.286 eV. Segregation of 
a Cu layer is slightly less stable than a single atom. 

The MD/MC-CEM method has been applied to segregation in alloys of metal 
clusters (Stave and DePristo 1990). For mixtures of Cu and Ni atoms, they find that Cu 
segregates very strongly to the outside of the clusters. For large clusters, the Cu atoms 
completely surround the Ni atoms, an effect which is directly analogous to surface 
segregation. For small clusters, Cu does not segregate to outer surfaces but instead Cu 
and Ni atoms segregate to different regions of the cluster. Insolubility rather than 
segregation appears to occur. Again these are predictions since the MD/MC-CEM 
embedding functions are determined by the homogeneous system. Trimetallic and 
more complex mixtures would be no more difficult to treat than a single component 
cluster (Kress et al. 1989). 

0 20 40 60 SO 
XCu(BuIk) (at. %) 

0 

Figure 14. Calculated Cu layer concentrations as a function of bulk composition at T= 800 K 
for the (1 11) face of Ni-Cu alloys. The solid curve is the top layer, the long-dashed curve is 
the second layer, and the short-dashed curve is the third layer. The points are the 
experimental values for the top layer (o), Ng et al. (1979), ( x), Webber et al. (1981), (+), 
Brongersma et al. (1978). Reproduced with permission (Foiles 1985a). 
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Experimentally, it has been observed that for Ni-Pt alloys the (111) and (110) 
surface exhibit different segregation (Gauthier et al. 1987). The (111) surface was 
enriched in Pt while the (110) surface was enriched in Ni. Lundberg (1987) has 
confirmed this reversal but does not elaborate on why this occurs, The finding is very 
interesting since the surface energy of a polycrystalline surface of Ni is slightly less than 
that of Pt, namely 2-38 and 2.49 J m-2 respectively, leading one to expect that Ni would 
be enriched in both surfaces. 

The different segregation observed may indicate that the relative face-dependent 
surface energies are reversed, since the averages are very close. This is indeed found by 
EAM calculations (Foiles et al. 1986) in table 2, where the Ni(ll0) surface energy is 
slightly smaller than the Pt( 110) surface but the Ni(ll1) surface energy is slightly larger 
than the Pt(ll1) surface. Whether a very small difference in surface energies is sufficient 
to explain the data is not apparent. One should also consider the different size of the Ni 
and Pt atoms. And, when the surface energy is sufficiently close, the segregation may be 
sensitive to temperature due to entropic effects. Since all of these are included using 
Monte Carlo simulations and the effective-medium-type methods, it should be possible 
to determine the surface-face dependence of segregation for all the methods. This would 
provide a critical test of the various approaches. 

4.2.8. Atomic chemisorption on metal surfaces 
There is an extensive body of experimental data on the energetics and structures of 

various adsorbates on metal surfaces. Generally, atoms chemisorb in electron-rich sites 
on a surface (i.e. the fourfold-centre site of f.c.c. (loo)), effectively maximizing the 
coordination with substrate metal atoms. Molecules such as CO may bind to lower 
coordination sites due to the strong directional nature of the molecular orbitals. 

The EM theory has been applied to the binding of H atoms on the most close- 
packed surfaces of transition metals (N~rskov 1984) with the results shown in figure 15. 

I 3d 

w 
I 
0 Y Z r  Nb Mo Tc Ru Rh Pd Ag 

Figure 15. Comparison between calculated (0 )  and experimental (0) chemisorption energies 
for hydrogen on the most closed packed surface of each of the transition metals. 
Reproduced with permission (Nerskov 1984). 
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The predicted binding energies are in very good agreement with experimental data, 
especially regarding the correct trends in the relative bonding strengths on different 
metals. 

Because of the computational ease of these methods, they can be used to determine 
structural parameters, such as the binding height and sites, which aids experimental 
work on similar systems. One example involves the chemisorption of H on Ni surfaces. 
Correct predictions of the geometry (Nrarskov 1982) of H on Ni(ll1) compared to 
experimental data led to confidence in the predictions of H on the Ni(100) and (1 10) 
surfaces. The geometry on the latter surface was not in a symmetric site, but rather in a 
pseudo-threefold binding location. 

The bonding of adsorbates on metal surfaces can also have an effect on the structure 
of the surface. We have already discussed the effect that K atoms have on the Cu(ll0) 
surface. What effect does a smaller, more tightly bound, species have on the Cu(ll0) 
surface? A recent EM calculation (Jacobsen and Nsrskov 1987) showed that a low 
coverage of chemisorbed H induces an expansion of the top-layer distance of the 
Cu(ll0) by about 4%. The induced expansion increased with coverage in agreement 
with recent LEED experiments (Baddorf et al. 1988). In addition, for subsurface H the 
induced expansion was even larger. This expansion stabilized the subsurface 
occupation but not enough to favour subsurface over surface chemisorption. 

Within the EM method, the physical basis for induced expansion is very simple, and 
is the inverse of the mechanism for contractions of a clear surface. The adsorption of H 
atoms to a surface with optimal geometry increases the electron density on the surface 
atoms above the previous optimal value. Thus the surface metal atoms expand away 
from the subsurface metal atoms to lower the electron-density environment. 

CEM calculations (Raeker and DePristo 1990) have been done for H and N atoms 
on Fe and W surfaces. The calculated binding energies and heights were in very good 
agreement with available experimental data. Adsorbate-induced expansion was also 
found in these systems, with the N atoms inducing over twice the expansion compared 
to H. 

The calculations revealed another mechanism driving the expansion, namely 
coupling between the adsorbate and second-layer metal atoms. If the adsorbate was 
close to a second-layer atom, the interaction between them could be greater than the 
metal-metal interaction. This caused the adsorbate to be attracted to the second-layer 
atom which in turn pushed the top-layer atoms away slightly. This explained the effect 
of coverage and relative binding strengths. If more adsorbates interacted with second- 
layer atoms, the top layer was pushed away even more. In addition, the greater the 
adsorbate-surface interaction, the closer the adsorbate could get and induce greater 
expansions. 

Both the EM and CEM calculations suggested basically the same mechanism 
behind the adsorbate induced expansions. Calculations such as these illustrated a real 
strength of the effective-medium-type methods. Not only could experimental data be 
reproduced but also one learned about the driving forces behind structural changes on 
surfaces. 

4.2.8. Dynamical phenomena 
4.2.8.1. Surface melting 

Recent observations have determined that the top layers of Al(110) and Pb(l10) 
begin to disorder about 150 K below the bulk melting temperatures, T, (Frenken and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Atom-homogeneous electron-gas bonding theory 47 

van der Veen 1985, von Blackenhagen et al. 1987, Pluis et al. 1987). The Al(111) surface 
was observed to melt only about 50 K below T,. The thickness of the melted region 
gradually increased up to just below T,, suggesting that the surface is the nucleation 
centre for the melting process. 

Theoretical simulations of this process have used large-scale molecular-dynamics 
simulations. Most attempts have used simplistic Lennard-Jones-type pairwise additive 
interaction potentials, which do not properly describe metallic binding. Of the effective- 
medium-type methods, to the best of our knowledge, only the EM method (Stoltze et al. 
1988) and ‘glue’ model (Carnevali et al. 1987) have been used to examine surface 
melting. 

The EM calculations on the melting of A1 surfaces showed that the Al(110) face 
melts at about 200K below the calculated bulk melting temperature. The melted 
surface region propagates gradually into the bulk solid as the temperature approaches 
T,. The Al(111) surface on the other hand showed a much weaker surface melting effect 
below T ,  This demonstrated that the relative stability of the various surface faces 
played an important role in the initiation of bulk melting. As the surface stability 
increases (ie. lower surface energy), the temperature required for surface melting also 
increases. 

Application of the ‘glue’ model to the surface melting of Au(ll1) discovered a very 
interesting feature. When a non-reconstructed Au( 11 1) surface was used, the top surface 
layers melted about lOOK below the calculated T,. However, the more stable 
reconstructed surface, which is a slightly more close-packed hexagonal structure, 
resisted melting and retained its ‘crystalline’ form as high as 150 K above the calculated 
bulk melting temperature. The important point is that the unreconstructed surface 
melted at 250 K below the reconstructed surface, since the calculated temperatures may 
not agree with the experimental data owing to inaccuracies in the model. These 
calculations, on a microscopic scale, illustrated the role that surface reconstruction can 
have on melting. 

4.2.8.2. High-energy ion sputtering 
A major accomplishment of all effective-medium-type methods is the ability to 

describe efficiently and properly many-body interactions. This has been tested for the 
medium-energy range (electronvolts) by the calculations of surface energies. Here we 
examine interaction energies on the order of kiloelectronvolts using high-energy 
scattering. 

A classical trajectory study of the ejection of Rh atoms from kiloelectronvolt Ar-ion 
bombardment of the Rh(ll1) surface (Garrison et al. 1988) has recently been done. The 
EAM functions usedin this study were fitted to bulk data, as in most previous work, but 
in addition the high-energy region of the Rh-Rh potential was used (Torrens 1972). 
They found that the EAM was able to reproduce experimental kinetic energy 
distributions of ejected Rh atoms better than the additive pairwise potentials, as shown 
in figure 16. Many-body interactions, which were important in the ejection process, 
were well described by the EAM method. 

The increased stability of Rh( 1 11) in the EAM uersus pair potential descriptions was 
proposed as the reason for the shift in the peak of the kinetic energy distribution to 
higher energies. Since the EAM consistently overestimates the stability of the surface, 
shifting of the peak is probably enhanced too much. 
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Figure 16. Experimental and calculated kinetic energy distributions. In all cases the curves are 
peak normalized. The two experimental curves are the angle-integrated distribution and 
one at 4 = - 30" and 0 =40+ 3". The EAM-M curves are the angle-integrated distribution 
and one at 4 = - 30" and 0 = 38 & 7.5". Only the angle-integrated distribution is shown for 
the pair-potential calculation. The angle-integrated distributions are shown as solid lines 
and the ones at 4 ~ 4 0 "  are dashed lines. Reproduced with permission (Garrison et al. 
1988). 

4.2.8.3. Epitaxy of metals on metals 
The epitaxy of metal atoms deposited on metal surfaces has undergone renewed 

activity, spurred on by the emergence of new technological advancements in monolayer 
deposition. The mechanisms of layer growth and the resulting structures are important 
in understanding the novel properties these systems display. The theoretical study of 
epitaxy has until recently focused on continuum models (Venables et al. 1984). If the 
deposited metal has a surface energy smaller than that of the substrate, it will tend to 
wet the surface, forming a single layer of atoms. In contrast, if the deposited metal has a 
higher surface energy, it will tend to form 3D clusters on the substrate. 

We have already mentioned the inadequacy of pair potentials for describing surface 
phenomena. Accurate microscopic treatments are emerging with the development of 
the effective medium type methods and supercomputers. The CEM and MD/MC- 
CEM methods have been applied to the Rh on Ag(100) system (Raeker et al. 1990), 
motivated by the discovery (Schmitz et al. 1989) that when a deposited Rh film on 
Ag(100) is annealed to 600 K a sandwich-type structure was formed. In other words, an 
additional layer of Ag was formed on top of the original Rh layer which was on the Ag 
substrate. This effect was proposed to be due to the different surface energies of the two 
metals. Defects in the surface and adlayer were also assumed to enable Ag atoms to 
migrate from the substrate through the Rh layer and wet the Rh surface. 
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Prior to the dynamical calculations, interaction-energy calculations using both the 
CEM and MD/MC-CEM theories confirmed that a Rh layer is more stable under a Ag 
layer rather than exposed on the surface. Molecular-dynamics simulations were used in 
conjunction with the MD/MC-CEM forces to examine the initial evolution of the 
surface to subsurface chemisorption. These calculations suggested that the above 
proposed mechanism was essentially correct. Maximization of the Rh atom’s binding 
energy drove the Rh to full coordination by exchanging position with a Ag surface 
atom. Once chemisorbed in a centre site, a Rh atom waited for the four nearest Ag 
surface atoms, oscillating in their lattice positions, to open a large enough gap to enable 
the Rh atom to displace a Ag atom. Once this process starts the Rh atoms had about an 
80% success rate in completing the exchange. 

It was observed that this exchange process catalysed itself at temperatures above 
400K. If there were a number of Rh atoms grouped together and one of them 
exchanged with a surface Ag atom, the others quickly followed. The exchange 
disturbed the surrounding Ag atoms enough to open gaps for the remaining nearby Rh 
atoms. The type of exchange spread until all the original surface Rh atoms in the cluster 
exchanged with the Ag. In contrast, ifno atoms in a Rh cluster exchanged with Ag, the 
cluster maintained its original structure on the surface, indicating that diffusion of Rh 
on Ag played no role in the process. The amount of exchange was seen also to increase 
with temperature and the openness of the Ag surface (e.g. (1 10) > (100) >>( 11 1)). 

If a defect-free ideal monolayer of Rh atoms were made and annealed (by computer 
simulation of course), it was found that no exchanges occurred for temperature as high 
as 1000 K. Removing a few random Rh atoms, and thereby creating defects, resulted in 
exchange that, once catalysed, would continue (if allowed to run long enough) until the 
supply of surface Rh adatoms was depleted. All these results implied that the formation 
of a sandwich compound was kinetically limited. 

5. Extended EM-type theories 
The applications in this review encompass a wide range of phenomena on pure 

metals, mixed metals and atoms interacting with these. They do not cover covalently 
bound molecules interacting with metals since these present severe problems for the 
present EM methods. The basic reason is easy to see within the CEM method, for 
example. To describe a molecule such as 0,, the covalent embedding function is 
required, while for 0 interacting with a metal surface the SCF-LD embedding function 
is appropriate. In the EM language, the one-electron energies for the molecule are 
extremely different from those of the atoms in jellium, while those of the chemisorbed 
atoms are quite similar to the atoms in jellium. Thus the corrections to the atom-in- 
jellium system are much larger in the former case. The end result is that a consistent 
description of the covalently bound molecule and the more ionically-bound atomic 
chemisorption is not provided. Since the energy balance between molecular bonds and 
atom-surface bonds is crucial in the description of the reaction, it is very difficult to 
describe the reaction correctly. 

An empirical treatment of the molecule-surface interaction has been provided 
based upon use of a modified four-body LEPS form for the interaction of the molecule 
with the metal surface. This has been reviewed in great detail (DePristo 1989, DePristo 
and Kara 1990), so we just provide a brief outline here. The original idea of the four- 
body LEPS form was due to McCreery and Wolken (1977). This was later modified and 
quantified to be more accurate for metal surfaces by Lee and DePristo (1986) who 
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incorporated EM-like forms for the atom-surface interactions. Even more recently, 
Truong et al. (1989) have used EAM interactions for the atom-surface interactions. 

For a diatomic molecule AB, interacting with a metal, M, the basic idea is to use 
valence-bond theory for the atom-surface interactions, V,, and VBM, along with VAB to 
construct VAB,w The explicit form is 

VA, , ,=QAM+QBM+QAB-CJAB(JAB-J~-JBM)+(JAM+ J B d  1 , (5-1) 

where Q and J are Coulomb and exchange integrals respectively for each constituent. 
These are determinxi from the general forms 

Q + J = K  (5.2 a) 

Q-J=v*, (5.2 b) 

where Vand V* are the bonding and antibonding parts of the interactions respectively. 
The former are provided by a Morse potential for V ,  with EAM-like forms for VAM 

and VBM,  which uses the SCF-LD embedding functions, electron density of the surface 
atoms and adjustable two-body potentials. The V* are determined by arbitrary forms 
employing adjustable parameters, the so-called Sat0 parameters. 

The important feature of this form is the non-additivity of the interaction potentials. 
It is the precise division into Q and J for each interaction in equation (5.1) that controls 
the topology and energies of the full molecule-surface interaction potential. 

This empirical approach is only a temporary pragmatic solution. It does not 
address the problem of covalent uersus ionic bonding in the effective-medium-type 
theories as described in the beginning of this section. Rather, it ignores the problem by 
not using the effective-medium-type theories for the covalently bonded moleclule. The 
price paid for this is the introduction of new arbitrary parameters to control the 
division into Coulomb and exchange interactions. These parameters must be 
determined for each molecule-surface combination. 

A recent approach has attempted to interpolate the difference in one-electron 
energies within the EM method (Nlarskov 1989). First, the known molecular binding 
potential was used to define the diatomic correction: 

2 112 

dempty=AE(Al,A2)- AEEM,i(Ai; (5.3) 
i=1 ,2  

Then SCF-LD calculations of the diatomic in jellium were used to define another 
correction dfilled. Both these corrections depended upon the bond length of the 
molecule while dfilled also depended upon the jellium electron density. The terminology, 
filled and empty, referred to the occupation of the lowest unoccupied molecular orbital 
(LUMO). The interpolation between the empty and filled correction was written as 

6 = nLmO&illed + (1 - n L m d d e m p t y ,  (5.4) 

where nLUMO is the fractional occupation of the LUMO. This was determined from a 
tight-binding calculation. Initial results were very encouraging for the dissociative 
chemisorption of H2 on the (100) (1 10) and (1 11) faces of Ni and Cu. 

6. Discussion and summary 
It is worthwhile to summarize the general capabilities and limitations of the current 

implementations of effective-medium-type theories. These methods can provide an 
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accurate description of metal-metal bonding for simple or transition metals with weak 
d bonding. This includes homogeneous and heterogeneous systems, and also extends to 
non-metallic binding of atoms to metals. All of the methods are less accurate for strong 
d bonding. They do not describe the difference in structural energies between different 
metallic coordinations at sufficient accuracy to distinguish among b.c.c., f.c.c. and h.c.p. 
structures. (The Finnis-Sinclair method uses a restriction to nearest neighbour 
interactions to overcome this problem, but this cannot be generalized to non-periodic 
structures.) Directional bonding is not incorporated consistently but must be 
incorporated by a priori specification of the electron density. 

At present, the CEM method is the most general and applicable to small and large 
systems. It is also demanding enough computationally to limit its use to Monte Carlo 
simulations of systems with fewer than about 100 atoms. The EM method is also quite 
general and simpler computationally, but is restricted to more extended systems. Still 
simpler is the semi-empirical MD/MC-CEM method which eliminates kinetic- 
exchange-correlation energy inhomogeneity effects included in the CEM method, but 
which is also efficient enough computationally to be used in simulations on systems 
with many thousands of atoms. It can be applied to small and large systems but will be 
more accurate for the latter. For these three methods, the embedding energies depend 
only upon the type of atom and the jellium electron density. The two-body interactions 
are specified in terms of properties of the atoms (e.g. by the HF electron density in 
CEM) and are not adjustable. Changing the types of atoms does not entail any more 
difficulty in the calculation. These theories allow for predictions about a wide variety of 
heterogeneous systems. 

The simplest methods are the EAM, Finnis-Sinclair and ‘glue’ models. Electron 
density, embedding and two-body functions are all determined empirically from 
experimental data. (In the ‘glue’ model an effective coordination function is defined 
rather than an electron density function.) Changing the atoms requires re- 
determination of the parameters. Some properties of heterogeneous systems must be 
used in order to predict others. 

Implementation of these theories spans a wide range of computational difficulty. 
The empirical effective-medium-type methods are only slightly harder to apply than 
pair potentials. The MD/MC-CEM method is considerably more difficult, requiring 
HF densities and embedding functions, and routines for overlap integrals, Coulomb 
integrals and Chebyshev smoothing. The CEM theory also requires multicentre 
numerical integration. 

The development of these methods over the past decade has led to a multitude of 
applications which were essentially comparisons between experiment and theory to 
test the accuracy of the latter. Now, with an understanding of the adequacies and 
inadequacies of the various theories, we expect more significant applications to 
predictions of chemical, mechanical and dynamical properties of metallic systems. 
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